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Abstract
Akram, A. 2023. Towards Realistic Hyperon Reconstruction in PANDA. From Tracking
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The PANDA (anti-Proton ANnihilation at DArmstadt) experiment at FAIR (Facility for Anti-
proton and Ion Research) aims to study strong interactions in the confinement domain. In
PANDA, a continuous beam of anti-protons will impinge on a fixed hydrogen target inside the
High Energy Storage Ring (HESR), a feature intended to attain high interaction rates for various
physics studies e.g. hyperon production.       

This thesis addresses the challenges of running PANDA under realistic conditions. The focus
is two-fold: developing deep learning methods to reconstruct particle trajectories and reconstruct
hyperons using realistic target profiles. Two approaches are used: (i) standard deep learning
model such as dense network, and (ii) geometric deep leaning model such as interaction graph
neural networks. The deep learning methods have given promising results, especially when it
comes to (i) reconstruction of low-momentum particles that frequently occur in hadron physics
experiments and (ii) reconstruction of tracks originating far from the interaction point. Both
points are critical in many hyperon studies. However, further studies are needed to mitigate e.g.
high clone rate. For the realistic target profiles, these pioneering simulations address the effect
of residual gas on hyperon reconstruction. The results have shown that the signal-to-background
ratio becomes worse by about a factor of 2 compared to the ideal target, however, the background
level is still sufficiently low for these studies to be feasible. Further improvements can be made
on the target side to achieve a better vacuum in the beam pipe and on the analysis side to improve
the event selection.

Finally, solutions are suggested to improve results, especially for the geometric deep learning
method in handling low-momentum particles contributing to the high clone rate. In addition, a
better way to build ground truth can improve the performance of our approach.
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Part I:
Motivation and Methods





1. Introduction

The goal of the antiProton ANihilation at DArmstadt (PANDA) experiment at

the Facility for Anti-proton and Ion Research (FAIR) is to study strong inter-

actions at the energy scale where quarks form hadrons. In PANDA, a quasi-

continuous beam of antiprotons ( p̄) will impinge on a fixed hydrogen (p) tar-

get inside the High Energy Storage Ring (HESR), resulting in high interaction

rates - up to 20 MHz - for hadron physics studies. The beam momentum will

range from 1.5 GeV/c to 15 GeV/c.

Antiproton-proton annihilation reactions will provide opportunities to study

hadronic processes in the strong interaction confinement domain. Detector

signatures from these processes are complex and are very similar to other

hadronic processes of less interest, which makes it difficult to distinguish sig-

nal from the background. The latter is particularly true in the high-intensity

environment that PANDA provides. In feasibility studies of hadronic reac-

tions using simulated data, it is essential to consider realistic conditions at the

operational and analysis levels.

The focus of this thesis is two-fold. First, we aim to develop realistic track

reconstruction algorithms. Second, we will simulate particle reactions using

realistic target conditions, taking vacuum conditions in the beam pipe into

account.

Several realistic track reconstruction algorithms are currently under devel-

opment within PANDA. The event topology, i.e. how many tracks and decays

an event contains, dictates which algorithm is suitable for track reconstruction,

in particular the particle multiplicity, the particle momenta and the location of

decay vertices. The presence of neutral particles provides an additional chal-

lenge: they leave no signal in tracking detectors but can only be observed

indirectly through their decay products. This makes track reconstruction even

more complicated. Many classical algorithms are specialized to specific sce-

narios; for example, tracks that originate in the interaction point. Other al-

gorithms search for particles that decay a measurable distance away from it.

Most algorithms, especially those designed for high-energy experiments, are

less efficient for low-momentum particles with spiralling trajectories that may

overlap with those of other particles. Such tracks are difficult to distinguish

from one another. The frequent occurrence of low-momentum tracks with

strong curvatures in mid-to-low energy hadron physics experiments, motivates

the development of new track reconstruction algorithms that can accommodate

these issues. In high-energy physics, the use of deep learning algorithms in

particle tracking is gaining momentum. Would such approaches be useful also
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in the low- and intermediate domain of hadron physics? To answer this ques-

tion, this thesis presents novel deep-learning methods to reconstruct particles

produced in antiproton-proton annihilations in PANDA. The algorithms have

been bench-marked, first using muons ( μ+μ−) and then Λ hyperons decay-

ing into pions and protons. In the second part of the thesis, I will outline the

development and implementation of these methods and evaluate them based

on the aforementioned benchmark studies.

In the third part of the thesis, I investigate how the reconstruction efficiency

is affected if realistic target conditions in the beam pipe are considered. Within

PANDA, two types of hydrogen targets are under development: a pellet target

and a cluster-jet target. In the first case, high-density pellets will be injected

to collide with the beam at the interaction point. In the second case, jets of

cooled hydrogen gas will be used. Due to the beam-target interaction, gas

will evaporate from the pellets and jets and may dissipate into the beam pipe,

resulting in an effectively large target. This has been shown in vacuum simula-

tions performed by a group in Muenster, Germany, where vacuum pumps and

a cryogenic pump are used to mitigate the residual gas [1]. Nevertheless, all

physics feasibility studies within PANDA have until now been performed as-

suming a point-like target. In my thesis, I will investigate the effect of residual

gas on the reconstruction of hyperons using p̄p → Λ̄Λ → p̄π+pπ− as a bench-

mark channel using ideal track finding algorithm to minimize effects from the

track reconstruction.

1.1 Thesis Disposition

The current thesis is divided into three major parts as shown in Figure 1.1.

Part I consists of work done by others. It includes a physics background,

experiential details, and methods applied in this thesis. Parts II and III cover

the work done by myself.

PART I
Motivation and

Methods

PART II
Realistic Track Reconstruction in the
PANDA Target Spectrometer using

Deep Learning Techniques

PART III
Simulations of Hyperons

under Realistic Target
Conditions

PART VI
Conclusion,
Outlook, etc

Figure 1.1. Distribution of the work presented in this thesis.

In Part II, machine learning techniques are used for track reconstruction in the

Straw Tube Tracker of the PANDA experiment. First, I explore the reconstruc-

tion of muons using the standard and geometric deep learning models. Next,

low-momentum hadron from p̄p→ Λ̄Λ→ p̄π+pπ− reaction are reconstructed
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using geometric deep learning in the same manner as of muons. In Part III,

the effects of the residual gas are studied by simulating and reconstructing

hyperons from the p̄p → Λ̄Λ → p̄π+pπ− reaction.

The content of this thesis is partly based on the licentiate dissertation "To-
wards a Realistic Hyperon Reconstruction with PANDA at FAIR" that I sub-

mitted at Uppsala University in 2021. Most of the content from the licentiate

has been substantially revised. From Part I, Chapters 1, 2, 3, and 4 were part of

the licentiate thesis; all have been revised or extended. Chapter 5 on machine

learning is presented for the first time in this thesis. Part II is completely new

to this thesis, while Part III includes chapters 10, 11, and 12 from the licentiate

dissertation. Chapter 10 and Chapter 11 are moderately revised, keeping the

results unchanged. Chapter 12 is a modified and reduced version of the cor-

responding chapter in the licentiate thesis; it keeps two scenarios among four

from the licentiate.
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2. Hadron Physics

Hadrons are bound together by the strong interaction, and therefore they con-

stitute the primary laboratory for strong processes. The PANDA will be the

largest and most versatile hadron physics experiment ever built worldwide [2].

In the following, I will put hadron physics in the context of the Standard Model

(SM). The SM is a quantum field theory (QFT) of three fundamental forces:

electromagnetic, weak and strong force. In the following, a brief introduction

to the SM, leading up the hyperon studies, is given.

2.1 The Standard Model

The SM is a relativistic quantum field theory (QFT) about fundamental parti-

cles and their interactions [3]. The SM is a non-Abelian gauge theory whose

Lagrangian1 is invariant under local gauge transformations. The underlying

internal symmetries of the SM are represented by the gauge group GSM =
SU(3)C ⊗ SU(2)L ⊗U(1)Y whose generators gives rise to twelve massless

gauge bosons: eight gluons (G1,G2, ..,G8) representing SU(3)C and four elec-
troweak bosons (W+,W−,W 0 and B) representing the gauge group SU(2)L ⊗
U(1)Y , respectively.

The sub-sector of GSM representing the strong interaction is SU(3)C that is

invariant under local gauge transformations. The SU(2)L ⊗U(1)Y represents

the electroweak interactions that are spontaneously broken to the U(1)EM
gauge group through the Higgs mechanism. As a result, the W 0 and B bosons

mix together to produce in total three massive weak bosons (W+,W−,Z0) and

a massless electromagnetic boson (γ) representing weak and electromagnetic

interactions.

In the field theoretical treatment of SM, the objects are quantum fields:

fermionic and bosonic fields. The excitations of these fields give rise to the

physical particles called fermions and bosons, collectively called elementary

particles, that are observed in the universe. The fermions are further divided

into quarks and leptons whereas bosons are divided into gauge/vector bosons

(g,W±,Z0,γ) and a scalar boson (H). The SM particles are shown in Fig-

ure 2.1.

1i.e. containing fields and their interactions
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Figure 2.1. The SM of Particle Physics: Fermions (green and purple) and Bosons

(orange and yellow). Image is taken from Ref. [4].

The Fermions
There are twelve fermions in the SM that are divided into two groups: quarks
and leptons. All fermions have antiparticles with the same mass and spin, but

with opposite electric charge and anticolor (quarks q) or lepton number (lep-

tons l). The fermions are organized into three generations, where the higher

generation particles decay into the lower generation ones through weak inter-

actions.

The quarks come in six flavors: up (u), down (d), charm (c), strange (s), top
(t), and bottom (b) organized into the first (u,d), second (s,c) and third (t,b)

generations. This means that top and bottom decay into (primarily) charm

and strange, while charm and strange eventually decay into up and down.

The quarks are the only particles that have fractional electric charges, and

are shown in Figure 2.1.

The leptons come in both charged and neutral types. The charged leptons

(l) are massive whereas their associated lepton neutrinos (vl) have negligible

mass. Other than neutrinos, the lightest leptons are the stable electron (e−) and

its anti-particle, positron (e+). The muon (μ−), tau (τ−) along with their anti-
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particles (μ+, τ+) are unstable particles and decay to electron and neutrinos2.

The leptons are shown in Figure 2.1.

The Bosons
The bosons, or gauge bosons, are force particles responsible for interactions

between fermions and bosons. For example, the electromagnetic interaction

between two charged leptons occurs by the exchange of a virtual photon (γ)

which is the gauge boson of the electromagnetic force. In a similar way, two

quarks interact with each other through the strong interaction by the exchange

of gluons (g) which are the mediators of the strong force. The weak interaction

is mediated by the exchange of massive weak bosons i.e. W+,W− or Z.

Table 2.1. The bosons and their properties in the SM [5].

Interactions Force Carrier Mass (GeV/c2) Quantum Field Theory

Electromagnetic γ 0 Quantum Electrodynamics

Electroweak W±,Z0 80.1,91.2 Electroweak Theory

Strong g 0 Quantum Chromodynamics

Each force has an underlying physical theory that explains its aspects in great

detail. The electromagnetic and weak forces have been unified under the Elec-

troweak theory and together with Quantum Chromodynamics they constitute

the SM.

2.1.1 Quantum Chromodynamics (QCD)

The field theory which explains the behavior of the strong interaction is called

Quantum Chromodynamics (QCD). QCD is a gauge theory which is invariant

under SU(3)C local phase transformations whose generators are represented

by 3× 3 matrices. This means the particle fields (quarks) should be a three-

component field distinguish by their color charge with red, green and blue
as its components. SU(3) local phase transformations means the rotation of

states in color space. The local gauge invariance, however, can only be en-

sured by introducing eight gauge fields known as gluons. The generators of

the SU(3) symmetry group do not commute, thus QCD is a non-Abelian gauge

theory which allows directly for self-interactions of gluons, i.e. gluon-gluon

interactions, as well as the interactions with the quark fields (quark-gluon in-

teractions).

Due to color confinement, quarks can not exist freely in nature. The sim-

plest colorless bound states can be formed either by combining a quark and

an anti-quark commonly known as meson (qq̄) or by three quarks commonly

known as baryons (qqq). The lightest mesons are the pion isotriplet (π±,π0),

2e.g. μ− → e−ν̄eνμ
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two kaon isodublets (K+,K0 and K̄0,K−) and the eta isoscalars (η ,η ′). To-

gether they form a meson nonet. The lightest and most well-known baryons

are the protons (p), neutrons (n), i.e. the nucleons, which form the atomic

nucleus. They are the lightest baryons that form the bulk of visible matter in

the universe. Together with Λ,Σ0,Σ±,Ξ0, Ξ− and the nucleons form the spin

1/2 baryon octet. The grouping of mesons and baryons as nonet, octet, etc is

known as the Eightfold Way [6, 7]. The pseudoscalar meson nonet and spin

1/2 baryon octet are shown in Figure 2.2.

Figure 2.2. Meson Nonet and Baryon Octet, the Eightfold Way. Image credited to

Wikipedia Images [8].

All baryons with strangeness different from zero are referred to as hyperons.

Hyperons include the octet states S = −1 and S = −2 in the right panel of

Figure 2.2. In Section 2.2, hyperons and their properties are discussed in more

detail.

2.2 Hyperon Physics

Hyperons, denoted Y , are baryons where one or more up (u) or down (d)

quarks are replaced by a strange (s), charm (c) and bottom (b) quarks. In this

work, we restrict ourselves to ground-state strange hyperons only. In particular

the lightest hyperon, the Λ, will be discussed in detail.

2.2.1 Strange Hyperons

The ground-state strange hyperons are Λ, Σ, Ξ (from the spin 1/2 baryon octet)

and Ω (from the spin 3/2 baryon decuplet). The properties of strange hyperons

such as mass, mean life-time, etc. are listed in Table 2.2.

The Λ hyperon has a quark composition uds, and is considered a heavier

sibling of p and n3. Since the quark composition of Λ, Σ0 and Σ+ is very

similar to that of the p and the n, they offer a tool to understand the role of

3 p ∼ udu, n ∼ udd
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Table 2.2. The ground state strange hyperons and some of their properties. There are
plenty of excited states of these baryons [5].

Hyperon m [GeV/c2] τ[s] cτ [cm] Dominant Decay, BR

Λ (uds) 1.115 2.63 ·10−10 7.89 pπ−, (63.9±0.5)%
Σ+ (uus) 1.189 8.01 ·10−11 2.40 pπ0, (51.57±0.30)%
Σ0 (uds) 1.193 7.40 ·10−20 2.22 ·10−9 Λγ, (100)%
Σ− (dds) 1.197 1.48 ·10−10 4.43 nπ−, (99.848±0.005)%
Ξ0 (uss) 1.315 2.90 ·10−10 8.71 Λπ0, (99.524±0.012)%
Ξ− (dss) 1.322 1.64 ·10−10 4.91 Λπ−, (99.887±0.035)%
Ω− (sss) 1.672 8.21 ·10−11 2.46 ΛK−, (67.8±0.7)%

strangeness in electromagnetic and strong interactions. Among all hyperons,

Λ is the most long-lived hyperon with a mean lifetime of τ = 2.6× 10−10 s.

This implies that it flies a measurable distance - the decay length is cτ =
7.89 cm - after production. The Σ0 hyperon is the only one among the ground-

state hyperons that has a lighter partner with the same quark composition. This

means that it can decay electromagnetically, in contrast to the others which

must decay weakly. As a consequence, the lifetime of the Σ0 is much shorter

than for the other hyperons: with τ ≈ 10−20 s its decay can be considered

instantaneous on an experimental scale.

2.2.2 Hyperon Production

Hyperon-antihyperon pairs can be abundantly produced in antiproton-proton

(p̄p) annihilation reactions, a feature that will be exploited in the PANDA

experiment. The production of hyperons is governed by the available energy

and the mass of strange quark (ms ≈ 93 GeV/c2). The mass ms is close to the

QCD scale ΛQCD (∼ 200 MeV) which corresponds to the confinement domain

of QCD. Producing an ss̄ pair requires energies of the same scale as ΛQCD.

Hence, one can say that by studying hyperon production we probe the strong

interaction in the confinement domain.

Antiproton-proton annihilation with the subsequent production of an anti-

hyperon hyperon pair, i.e. p̄p → ȲY , provides a clear, two-body final state in

contrast to production with electromagnetic, meson or proton probes, where

hyperons typically needs to be produced with several recoil kaons and/or pro-

tons in order to conserve strangeness and baryon number. The final state is

particle-antiparticle symmetric and the two-body final state is straight-forward

to parameterize in terms of partial waves. In hyperon production studies, the

variables of interest are the cross-section, scattering angle distribution and spin

observables such as polarization and spin correlations [9].

In reactions like p̄p → ȲY , where Y can be different hyperons such as

Λ, Σ, Ξ and Ω, we learn about which degrees of freedom are relevant in this

kind of processes: quarks and gluons, or hadrons [10, 11]. In Figure 2.3 three
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prototype reactions are shown in which p̄p annihilations result in the subse-

quent production of hyperon-antihyperon pairs with Λ,Ξ and Ω hyperons. In

the figure, the most prominent decay chains are shown for each case.

Figure 2.3. Hyperon (Λ,Ξ,Ω) production and decay channels at PANDA. Image is

credited to Ref. [18].

By implanting hyperons into an atomic nucleus, hypernuclei can be formed.

A hypernucleus is a state where a nucleon is replaced with a hyperon. Here,

strangeness provides an additional degree of freedom which will help to un-

derstand e.g. neutron stars [12].

2.2.3 Hyperon Decays

All ground-state hyperons, except the Σ0, decay through parity-violating weak

decays. Hyperon decays, where the spin is experimentally traceable, offer

a way to search for physics beyond the Standard Model via tests of Charge

conjugation and Parity (CP) conservation. This in turn is necessary in order to

understand the observed matter-antimatter asymmetry of the Universe [13].

The weakly decaying hyperons have lifetimes of the order of 10−10 s, which

means that they travel up to several centimeters in the detector before decay-

ing. Therefore, their decay vertices are located measurable distance from the

interaction point. Many heavier hyperons, such as Σ0,Ξ0,Ξ− and Ω−, decay

predominantly via intermediate neutral Λ hyperons making a reaction chal-

lenging to reconstruct from its final states. At PANDA, various strategies are

under development to reconstruct hyperons. This thesis presents one of these

approaches and is the first of its kind in PANDA.

2.3 Previous Hyperon Studies
In the past, experimental studies of hyperon production in p̄p annihilations

have mainly been constrained to singly strange hyperons, i.e. Λ,Σ0 and Σ+.

These studies are summarized in Figure 2.4 in terms of their production cross-

sections.
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Figure 2.4. Measured cross-sections for different hyperon production channels at

LEAR. Image is taken from Ref. [14].

The p̄p → Λ̄Λ reaction had been intensively studied in the PS185 experiment

at the Low Energy Antiproton Ring (LEAR). The PS185 was a fixed-target

experiment just like the PANDA experiment where approximately 40000 ex-

clusive events were analyzed at a beam momentum of 1.642 GeV/c [15, 16].

In these studies, it was found that the Λ̄ is preferentially emitted in the beam

direction in the in the center-of-mass frame i.e. the differential cross-section is

forward-peaking. At pbeam = 1.642 GeV/c, the total cross-section was found

to be 64.0± 0.4 (stat)± 1.6 (syst) μb [16] which is of the same order as the

non-resonant background. In addition, a complete spin decomposition of the

reaction was performed. It was found that that the Λ̄Λ pair is almost exclu-

sively produced in a spin triplet state [14].

At PANDA, p̄p → Λ̄Λ reaction is a suitable benchmark channel for hy-

peron studies since it is well-studied at LEAR and hence well understood and

parameterized. Being able to reconstruct Λ hyperons is therefore a prereq-

uisite for all kinds of PANDA hyperon studies. In the recent past, several

hyperon studies have been performed at Uppsala university. For example,

Sophie Grape studied p̄p → Λ̄Λ, Λ̄Ξ0 reactions as part of her doctoral the-

sis [17], Erik Thomé studied multi-strange and charmed hyperon-antihyperon

production at PANDA [9]. Both of these studies were performed with an older

software package called Pandora, based on the software from the BaBar exper-

iment. Pandora utilized idealized pattern recognition, and many of the detec-

tor features such as mechanical support structures between the active materi-

als, were not implemented. More recently, Walter Ikegami Andersson studied

spin observables of the p̄p → Λ̄Λ, Ξ̄+Ξ− reactions using the newer and of-

ficial PANDA software package PandaRoot. In addition, Ikegami Andersson

developed track reconstruction and fitting tools using approaches based on e.g.
Hough transformations and the Cellular Automaton for PANDA [10]. Jenny

Regina studied detector signatures of the p̄p → Λ̄Λ, Ξ̄+Ξ−, Ω̄+Ω− reactions

and developed a time-based track reconstruction algorithm, based on the Cel-

lular Automaton, for PANDA [18]. However, as mentioned above, all physics
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simulation studies were performed using ideal pattern recognition and with an

ideal point-like target. This thesis is a journey forward to understand hyperons

under realistic conditions. First, reconstruction of hyperons using machine

learning based track reconstruction algorithm in the Target Spectrometer of

PANDA. A similar approach as the one discussed here has also been utilized

in the PANDA Forward Spectrometer, in the thesis by Waleed Esmail [19].

Second, I perform simulation studies accounting for the fact that the planned

cluster jet target will cause gas leakage in the beam pipe, which leads to a

larger effective target than the designed one. In particular, I will investigate

whether it is possible to suppress the background to hyperon-antihyperon pair

production under such circumstances.

2.4 Scientific Questions for the Thesis

The scientific questions revolve around the realistic treatment of physics stud-

ies at PANDA. There are two main questions addressed in this thesis:

• How well do machine learning approaches perform in track recon-

struction in low-to-mid-energy hadron physics experiments? Which

kind of algorithm is suitable for this task? In particular, we are inter-

ested in tracks from low-momentum particles and tracks that do not

originate in the beam-target interaction point.

• How does gas dissipation into the beam pipe affect the ability to dis-

tinguish signal from background? In particular, is it possible to treat

reactions with the same final state particles, but with different point of

origin?

To answer the first question, machine learning is used to reconstruct particles

in the Straw Tube Tracker (STT) of PANDA: first muons and then hyperons

and their decay products. This problem is handled in several steps. The pro-

cess of track reconstruction is broken down into smaller tasks, i.e., edge clas-

sification and clustering. First, edge classification is performed using standard

and geometric deep learning models. Second, weighted edges are clustered

together to build tracks. This question is covered under Part II of this thesis.

To answer second question, first p̄p → Λ̄Λ → p̄π+pπ− signal reaction is

reconstructed under ideal vacuum condition. To see the effectiveness of our

analysis procedure, a non-resonant background, p̄p → p̄π+pπ−, is also re-

constructed. Using a similar procedure, signal and non-resonant background

channels are reconstructed under realistic vacuum conditions. An Figure-of-

Merit (FoM) is defined and calculated for both ideal and realistic cases. A

comparison of FoM for ideal and realistic vacuum conditions will shed light

on the effects of residual gas. This question is broadly answered in Part III of

this thesis.

23



3. The PANDA Experiment at FAIR

The antiProton ANihilation at DArmstadt (PANDA) is a future experiment

under construction at the Facility for Anti-proton and Ion Research (FAIR) in

Darmstadt. PANDA will be an integrated part of the High Energy Storage Ring

(HESR) at FAIR. The goal of this experiment is to study strong interaction in

the confinement domain.

3.1 Facility for Anti-proton and Ion Research
The future Facility for Anti-proton and Ion Research (FAIR) is currently under

construction adjacent to GSI Helmholtz Center for Heavy Ion Research (GSI)

in Darmstadt. Both facilities are shown Figure 3.1.

Figure 3.1. The FAIR facility (red) adjacent to existing GSI facility (blue) [20].

The GSI facility consists of a linear accelerator (UNILAC), a heavy-ion syn-

chrotron (SIS18) with magnetic rigidity of 18 Tm and a storage ring (ESR).

The UNILAC will accelerator heavy-ions to SIS18. Both the UNILAC and

the SIS18 will be upgraded to serve as injectors and boosters to FAIR accel-

erators. FAIR consists of a proton accelerator (p-LINAC) as injector to the
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SIS18, which in turn will feed the proton- and heavy-ion synchrotron SIS100.

The SIS100 will have a magnetic rigidity of 100 Tm, and a circumference of

≈ 1100 m. To ackumulate and store the beam, the FAIR will have cooler-

storage rings such as Collector Ring (CR), Recuperated Experimental Storage

Ring (RESR), New Experimental Storage Ring (NESR) and the High Energy

Storage Ring (HESR) for its experimental pillars such as

• PANDA - antiProton ANihilation at DArmstadt

• CBM - Compressed Baryonic Matter

• APPA - Atomic, Plasma Physics and Applications

• NUSTAR - NUclear Structure, Astrophysics and Reactions

The PANDA and APPA at FAIR will be dedicated to antiproton physics. The

high energy antiprotons (up to 14.1 GeV) will be used in PANDA at HESR. A

summary of FAIR can be found in Ref. [20].

3.1.1 Antiproton Target and Separator

The antiproton production will start by collecting primary protons from a pro-

ton source. The p-LINAC will accelerate these protons to the SIS18 syn-

chrotron, where protons reach a kinetic energy of 2 GeV. The SIS100 will

further accelerate these protons to a peak energy of 29 GeV. In the SIS100,

protons will be compressed to a single bunch of approximately 25 ns dura-

tion (∼ 7.5 m in length) with 2×1013 protons per bunch. Each bunch will be

ejected to the Antiproton Target and Separator every 10 s (per cycle), where

they will impinge on a stationary target, thus producing a cascade of particles

through inelastic scattering.

3.1.2 Collector-Storage Rings

The antiprotons will be separated in Antiproton Separator and transferred to

Collector Ring (CR) for pre-cooling. For a bunch size of 2× 1013 protons

at 29 GeV, approximately 1× 108 antiprotons are expected within the phase

space acceptance (magnetic rigidity of 13 Tm corresponding to 3 GeV antipro-

tons) of the following antiproton separator and collector ring. Pre-cooled an-

tiprotons will be injected to Recuperated Experimental Storage Ring (RESR)

for accumulation by applying a momentum stacking scheme. Details on CR

and RESR can be found in Ref. [21]. However, due to the development of

global events, the CR is currently not funded while the RESR is beyond the

initial phase of FAIR. Therefore, the CR and the RESR have been proposed to

be replaced with the COoler SYnchrtron (COSY) and Antiproton Akumulator

[22].
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3.2 The High Energy Storage Ring

The High Energy Storage Ring (HESR) will be dedicated to physics studies

with high energy antiprotons. The HESR will have the shape of a racetrack

ring with a maximum beam rigidity of 50 Tm. It will consist of two 180◦ arcs

and two 155 m long straight sections with a total circumference of 575 m. The

schematic of HESR is shown in Figure 3.2.

Figure 3.2. Overview of the High Energy Storage Ring (HESR) at FAIR.

The HESR will provide a quasi-continuous antiproton beam to the PANDA

experiment in the momentum range of 1.5 GeV/c to 15 GeV/c (energy range:

0.83 GeV to 14.1 GeV) at an injection momentum of 3.8 GeV/c. The HESR

will deliver the beam required for various physics studies planned for PANDA.

The beam dynamics will be controlled by various systems, such as magnets,

radio frequency (RF) cavities, and electron and stochastic cooling systems. In

addition, the RF barrier bucket is intended for longitudinal beam accumulation

to increase the intensity of the beam.

A typical cycle of operation includes the injection of an antiproton beam

from CR/RESR into the HESR at a momentum of 3.8 GeV/c. The beam will

then be pre-cooled and accelerated/decelerated to achieve desired beam mo-

mentum. The residual antiprotons will be recycled to initial injection momen-

tum and merged with the newly injected beam from CR/RESR. Electron cool-

ing or stochastic cooling methods will be used to attain the desired transverse

emittance and momentum resolution. The beam recycling is an important fea-

ture of HESR to achieve the desired luminosity at PANDA.

The HESR will operate in two modes: the High-Resolution Mode (HR)

and the High Luminosity (HL). The HR mode, accessible through the CR,

will have beam momenta between 1.5 GeV/c and 9 GeV/c with a peak lu-

minosity of L = 2 · 1031 cm−2 s−1. The beam will contain 1010 antiprotons

with momentum resolution of σp/p ≤ 2 ·10−4. Electron cooling is favored for

beam momenta up to 9 GeV/c. The HL mode, accessible through the RESR,
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will have beam momenta of 1.5 GeV/c to 15 GeV/c with a peak luminosity of

L = 2 ·1032 cm−2 s−1. The beam will contain 1011 antiprotons with momen-

tum resolution of σp/p ∼ 10−4. Stochastic cooling will be available for beam

momentum above 3.8 GeV/c. See details in Refs. [21, 23].

3.3 The PANDA Physics Program

During its lifetime, PANDA will explore several sub-domains of Quantum

Chromodynamics (QCD) in the non-perturbative regime. As discussed in the

previous sections, QCD has two special features, that corresponds to two dis-

tinct energy regions: asymptotic freedom (perturbative domain, αs → 0) and

confinement (non-perturbative domain, αs → 1). The non-perturbative domain

is a low-energy frontier that poses challenges to understand the hadronic states,

since the building-blocks, i.e. the quarks and gluons, cannot be observed as

free particles. The PANDA experiment will provide unique opportunities to

study the non-perturbative QCD at the scale where quarks forms hadrons.

At PANDA, the p̄p and p̄A collisions will be used as diagnostics tools to

study the hadronic states as well as their associated symmetries. PANDA is

intended to run the different phases during its life-time. The physics program

accessible during the Phase-I [11] is summarized in Figure 3.3.

QCD in Confinement
Domain

Fundamental
Symmetries of Nature

Nucleon Structure

Strangeness Physics

Charm & Exotics

Hadrons in Nuclei

interactions

Figure 3.3. The PANDA Physics Program.

The PANDA physics program has four main pillars: (i) Nucleon Structure,

(ii) Strangeness Physics, (iii) Charm and Exotics, and (iv) Hadrons in Nuclei.

These areas are briefly described in the following sections.

3.3.1 Nucleon Structure

Here the main focus will be the inner structure of hadrons in terms of the dis-

tribution of quarks, as predicted by QCD and other phenomenological models.

For this purpose, electromagnetic probes have been used to study electromag-

netic form factors (EMFF) that quantify the inner structure of a hadron. The

EMFF are functions of momentum transfer squared, i.e. q2. For protons,

space-like EMFF can be studied using the e−p → e−p scattering and reveal

charge- and magnetization density [24]. The time-like form factors can give

27



addition information about the inner structure. In many cases, time-like form

factor are the only viable option. For example, in case of unstable particle

one can not study form factors in the space-like region. Instead, they need

to be extracted in the time-like region. The time-like region is divided into

three regions: low-q2, unphysical region and high-q2. PANDA gives access to

all time-like regions, in contrast to other experiments. The potential for mea-

suring time-like form factor through certain hadronic reactions appears highly

promising, as indicated by the findings of feasibility studies using p̄p → e+e−
[25] and p̄p → μ+μ− [26] where the high-q2 region is explored. Furthermore,

in the low-q2 region, Dalitz decays such as B1 → B2e+e− (where B denotes a

baryon) can be used to study the time-like form factors.

3.3.2 Strangeness Physics

In the first phase of operation, a major area of interest will be hyperon-antihyperon

production and multi-strange hyperon spectroscopy. The main goal at this

stage will be to measure the cross-section, spin observables, and angular dis-

tribution of different p̄p→ ȲY reactions [27]. Understanding hyperon produc-

tion is crucial for deeper insights in hyperon properties, hyperon decays, CP

violation, and hyperon structure [28]. In multi-strange hyperon spectroscopy,

excited multi-strange hyperons can be produced in p̄p → Ȳ ∗Y + c.c. reaction,

where Y and Ȳ ∗ denotes hyperons and excited antihyperons [29]. One of the

significant benefits is that the two-body final state makes it easier to perform

partial wave analysis (PWA) and suppress background efficiently. Further-

more, it is possible to produce excited hyperons near the kinematic threshold

which allows for studying final state interactions, which in turn can lead to the

extraction of hyperon-antihyperon potentials [29].

3.3.3 Charm and Exotics

The quark model classify hadrons as either as mesons (qq̄) and baryon (qqq).

However, QCD allows any color singlet state. Thus, states like tetraquarks

(qqq̄q̄), pentaquarks (qqqqq̄), glueballs (gg, ggg) and hybrids (qq̄g) should

also exist. Such states are referred to as QCD-exotic states [30]. The search

for exotic states and studying their properties is one of the main purposes of

PANDA. During the last 20 years, several charmonium-like states have been

discovered, for example, the so-called X(3872) discovered by Belle experi-

ment in 2003 [31] followed by the discovery of other, similar states. These

states are known as XYX states [30], as they do not fit into Quark Model. By

measuring the cross-section line-shapes of these states, we will learn about

their nature. For states which do not have JP = 1− quantum numbers (i.e. the

same as the photon), such line-shape studies are only possible in antiproton-

proton energy scans [32].
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3.3.4 Hadrons in Nuclei

The purpose of studying hadrons inside nuclei is to learn about hyperon-nuclei

interactions. In nature, such interactions occur under extreme conditions in

massive stellar objects like neutron stars where conversion of nucleons to hy-

perons becomes energetically favorable [12].

At PANDA, the antiproton beam can be used to study such interactions

in several ways: (i) production of hyperon-antihyperon near threshold, (ii)

antihyperon interactions with the nuclei, (iii) production of hyperatoms or

hypernuclei. When the low-momentum antiproton beam interacts with the

proton target, hyperons will be created with negligible momentum. The in-

teractions of these slow-moving hyperons can be modeled by nuclear poten-

tials. In many cases, hyperons are either captured inside the nuclear potential

forming either hyperatoms or a hypernuclei. The interaction potentials in hy-

pernuclei can be studied when an excited hypernucleus undergo γ-transitions

to its ground-state. The gamma-rays from these transitions will be measured

by Germanium detectors that are planned for PANDA. PANDA will provide

opportunities to understand hyperon-nuclei interaction due to expected high

hyperon-antihyperon production rates [33].

3.4 The PANDA Detector

The PANDA experiment is a general-purpose experiment under construction

at FAIR. The design goal of PANDA is to achieve a nearly 4π acceptance, a

high average interaction rate of up to 20 MHz, a high resolution in tracking

and calorimetry, as well as the capability to identify various particles in a broad

momentum range.

PANDA is divided into two magnetic spectrometers: the Target Spectrom-
eter (TS) and the Forward Spectrometer (FS). The target spectrometer will be

based on a solenoid magnet surrounding the interaction point (IP). The TS is

intended to perform measurements of particles emitted at large polar angles,

many of them with relatively small momenta. The forward spectrometer will

employ a superconducting dipole magnet optimized for particles emitted at

small polar angles. These particles typically have large momenta. The com-

plete setup is shown in Figure 3.4.

3.4.1 Target Spectrometer (TS)

The target spectrometer is hermetically sealed with sub-detectors arranged in

the form of a barrel, a forward end cap, and a backward end cap. A uniform

solenoid magnetic field strength of 2 T is applied. The barrel section covers

angular range of 22◦ < θ < 140◦. The forward endcap extends this range to 5◦
to the vertical and 10◦ to the horizontal planes whereas the backward endcap

29



Figure 3.4. Overview of the PANDA experiment, the subsystem are labeled in both

target and forward spectrometers.

covers the region in 145◦ < θ < 170◦ range. The sub detectors in the TS are

discussed in the following sections.

3.4.1.1 Solenoid Magnet
A solenoid magnet with a magnetic field of 2 T will surround the central track-

ing system in the target spectrometer [34]. The magnets bend charged particle

trajectories subject to Lorentz force (�F) that is proportional to velocity (v):

�F = q (�v×�B) (3.1)

where q is particle charge, �v is particle velocity and �B is magnetic field. The

force �F is always parallel to the plane of�v×�B. To keep a particle to circle of

certain radius, one can equate Equation 3.1 to the centripetal force as follows:

mv2
⊥

r
= qv⊥B (3.2)

This means that the bending radius of the trajectory will be

r =
mv⊥
qB

:=
p⊥
qB

(3.3)

This means that the transverse momentum of a curve with a given radius is

⇒ p⊥[GeV/c] = 0.3× r[m]×B[T ] (3.4)

Using Equation 3.4, one can find minimum transverse momentum (pmin
t ) of

particles needed for a particle to traverse fully traverse a detector. For exam-

ple, minimum pt for a particle to punch though the innermost and outermost
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layers of the STT detector, which are located at radii of 15 cm and 42 cm,

respectively, is given as follows:

pmin
t > 90−252 MeV/c (inner-outer layers) (3.5)

3.4.1.2 Micro Vertex Detector (MVD)
The Micro Vertex Detector (MVD) will be placed around the nominal inter-

action point. The maximum extension of MVD will be 150 mm in the radial

direction and 230 mm in the forward direction from the interaction point. The

combined polar angle coverage of both parts will be between 3◦ and 150◦. A

schematic picture of MVD is shown in Figure 3.5.

Figure 3.5. The cross-sectional view of MVD indicating barrel layers labeled in blue

and the forward disks labeled in red. Image is taken from [35].

The purpose of the MVD will be to determine the origin, or vertex, of particles

precisely, e.g. strange and charmed hadrons. Such particles have a relatively

long lifetime (10−13s for charm hadrons and 10−10s for strange) (see Table 2.2

for lifetimes of famous hadrons) and will travel a measurable distance before

decaying, thus creating a secondary vertex. In addition, the MVD will provide

the time information of the event, which is necessary for track- and event

reconstruction. Moreover, MVD will provide limited particle identification

through energy loss (dE/dx) measurements.

The MVD will consist of semiconductor sensors in the form of pixels and

strips. When a particle passes through these sensors, the electron-hole pairs are

created inside the sensor due to the ionization induced by the passing particle.

By applying an electric field across these sensors, the electrons drift toward the
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read-out electronics giving rise to a pulse. The location of a signaling sensor

provides the hit position of a particle.

The MVD will be divided into four barrel layers and six forward discs. The

two inner barrel layers and all forward discs are made from silicon hybrid

pixel sensors of the size 100 μm×100 μm. The other two outer barrel layers

and the complementary extension to the last two discs will be equipped with

Double-Sided Silicon Strip Detectors (DSSD). The DSSD will be rectangular

for the barrel part and trapezoidal for the forward discs. The innermost and

outermost barrel layers will be located at 25 mm and 135 mm radially. The

innermost and outermost discs are housed at 20 mm and 190 mm along the

beam axis, respectively. More details of MVD can be found in Ref. [35].

3.4.1.3 Gas Electron Multiplier Tracker
The Gas Electron Multiplier (GEM) tracker will be located in the forward di-

rection along the beam pipe, covering the transition region between the target

and forward spectrometers. The GEM tracker will cover the polar angle be-

tween 3◦ and 20◦. Figure 3.6 shows schematic diagram of the GEM tracker.

Figure 3.6. Position of the GEM stations along the beam axis. Image from Ref. [38].

The purpose of the GEM tracker will be to provide precise position informa-

tion of particles emitted at small angles, escaping STT in the forward direction.

The GEM tracker will consist of 3 to 4 stations. The stations will be made from

gaseous micro-pattern detectors. A unique feature of GEM is the principle of

electron multiplication inside an intense electric field through small perforated

holes on the surface of a special substrate, a technique first introduced by F.

Sauli [36]. When a particle traverses a GEM substrate, it creates electrons

and ions through ionization. An electric field is applied across the substrate

that intensifies surrounding the holes. The electrons pass through the holes,

multiplying due to an intense electric field. These electrons reach the read-out
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electronics, and a pulse is generated that can be used to reconstruct particle

position [37].

The GEM stations will be placed at 81 cm, 117 cm, 153 cm and 189 cm

along the beam axis from the interaction point. It has been decided that only

the 2nd , 3rd , and 4th station will be kept inside the GEM. These stations have

a diameter of 90 cm, 112 cm and 148 cm, respectively. The GEM planes are

read out from both sides. A particle passing through a GEM station will give

rise to two signals from both front and back readout channels. In general, par-

ticle tracks inside GEM will give rise to an even number of signals. However,

if a track gives an odd number of GEM hits, either the particle is deflected

from the surface or absorbed by the GEM plane. More details in Ref. [38].

3.4.1.4 Straw Tube Tracker (STT)
The Figure 3.7 shows the longitudinal (left) and cross-sectional (right) view of

the Straw Tube Tracker. The STT covers a radial distance between 15 cm and

41.8 cm and have a length of 150 cm along the beam pipe. The geometrical

polar angle coverage is 10◦ < θ < 140◦ and it will be able to fully reconstruct

the tracks of particles emitted at θ > 22◦. The purpose of the STT is to provide

precise position information in x,y, and z. How this is done, will be discussed

in detail in this thesis.

Figure 3.7. Cross-sectional (left) and Longitudinal (left) views of STT. Images are

taken from Ref. [39].

The STT will be built from straw tubes, each straw is a single channel read-out

drift tube consisting of aluminum (Au) coated Mylar tubes with a diameter of

10 mm and a gold (Au) plated anode wire in the center. These gas tubes will

be filled with a quenching gas which is a mixture of Argon (90%) with CO2

(10%). In total 4,636 such tubes are planned, arranged in hexagonal sectors

with densely packed planar layers as illustrated in Figure 3.7 (right). There

will be roughly 27 layers in the radial direction: 15−19 parallel layers along

the beam axis (green tubes in Figure 3.7 (left)) and 8 skewed layers layers
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with a tilt angle of ±3◦ for longitudinal momentum reconstruction (red and

blue tubes in Figure 3.7 (left)). The parallel tube layers aim to provide xy-

reconstruction. The rφ -plane position resolution is 150 μm and the longitudi-

nal position resolution is 1 mm.

When a particle traverses a tube, it ionizes the gas along its path. These

electrons drift towards the anode wire knocking more electrons along the way,

creating an avalanche, under the influence of an applied electric field. The time

to reach the anode is called drift time. The maximum drift time is ≈ 250 ns for

an electron created near the outer wall of the tube. The collection of electrons

at the anode wire create a signal/hit. The particle moving through the detector

creates a trail of such hits which is called a particle track. The circle around the

anode wire and going through particles point of closest approach to the wire

is called isochrone. A signal from the anode wire indicates that a particle has

traversed the tube anywhere along the isochrone. Determining which point on

the isochrone crosses the true particle path requires the combination of several

hits. Figure 3.8 shows a particle trajectory along with the isochrones.

Figure 3.8. Isochrone radii in the Straw Tubes.

To make proper use of the isochrones, a reference time is needed that measures

the time difference between the wire giving a signal and the particle traversing

the straw tube. Such a time reference can be obtained by a faster detector

such as the MVD or the Barrel Time of Flight [18]. Using isochrone can give

position resolution of 150 μm in rφ−plane of the STT. More details can be

found in Ref. [39].

3.4.1.5 Barrel Time-of-Flight (BToF)
The Barrel Time-of-Flight (BToF) detector is one of the dedicated particle

identification detectors. The BToF as well as the FToF are relative Time-of-

Flight (ToF) counters i.e. they measure the arrival time of a charged particles

rather than an absolute time difference. This is because there is no dedicated

start detector in PANDA. However, complementary timing signals can be ob-

tained from e.g. the MVD or by combining signals from the STT. To identify a

particle, the momentum (p) and track lengths (l) of a particle are first extracted

from the central tracking detectors. Second, the time-of-flight (ti) is calculated
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for different mass hypothesis (mi) according to Equation 3.6.

ti = l ×
√
(mi/p)2 +1 (3.6)

The time from Equation 3.6 is compared to the measured time obtained by the

BToF to get the correct mass hypothesis. A normalized Gaussian is generated

for each event, with the mean centered at the expected Time-of-Flight for a

specific particle hypothesis. From this Gaussian, a probability density function

is derived and evaluated using the measured Time-of-Flight. To determine the

PID probability for each particle hypothesis, the probability density functions

are normalized so that the sum of all probabilities is equal to one [40].

Figure 3.9 shows the drawing of Barrel ToF. BToF is built from scintillator

tiles with dimension of 87× 29.4× 5 mm3 per tile. Each scintillator tile is

read by four Silicon Photomultiplier (SiPMs) tubes on each side covering the

30×5 mm2. The BToF will cover the angular acceptance of 22.5◦ −140◦ and

occupy the radial distance of 42 - 45 cm from the beam axis. To separate two

different particle masses, e.g. π and K separation, an excellent time-resolution

is needed. The BToF is designed to have a time resolution better than 100 ps.

It will be placed just outside of the Barrel DIRC. See more details in Ref. [41].

Figure 3.9. The BToF in the target spectrometer. Image is taken from Ref. [41].

3.4.1.6 Detection of Internally Reflected Cherenkov (DIRC)
The purpose of the DIRC counters are to provide particle identification. They

will be based on the Detection of Internally Reflected Cherenkov (DIRC) light

principle, i.e., when a particle moves through a medium with a velocity greater

than the velocity of light in that medium, then electromagnetic shock waves

in the form of Cherenkov light are emitted. The emission angle of emitted

photons and the number of photons depend on a particle’s velocity. This infor-

mation, together with the momentum of a particle e.g. from tracking detectors,
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can be used to calculate the particle’s mass. In this way, a particle can be iden-

tified with a certain probability. Figure 3.10 shows drawing of of DIRC.

Figure 3.10. The Barrel DIRC and the forward endcap Disc DIRC in the target spec-

trometer. Image is taken from Ref. [42].

The DIRC, as well as the Ring Imaging Cherenkov (RICH), are Cherenkov

detectors. The DIRC will be used in the barrel (Barrel DIRC) as well as in

the forward endcap (Disc DIRC) of the target spectrometer. The Barrel DIRC

will surround the interaction point at a radial distance of 50 cm, and have

an angular acceptance of 22◦ − 140◦. It is intended to achieve clean π/K
separation up to 3.5 GeV/c. The Disc DIRC will cover polar angles between

5◦ −22◦, and will provide π/K/p separation between 1−4 GeV/c. It will be

placed 194 cm downstream of the beam pipe. More details in Ref. [42, 43].

3.4.1.7 Muon System (MS)
The MS will be another dedicated PID detector designed explicitly for muons.

Muons are almost 200 times heavier counterpart of electrons that can travel

further in the detector due to their low ionization loss. The MS will detect

muons in a broad momentum range together with the forward Muon Range

System (MRS). The muon system will be built as alternating planar absorber

(Fe) and sensor (Mini-Drift Tubes) layers. The purpose of the absorber is to

absorb particles other than muons so that only muons reach the sensor layers.

The mini drift tubes (MDTs) will be made of aluminum with gold-plated tung-

sten anode wires. The MS will be housed in barrel (2133 MDTs) and forward

endcaps (618 MTDs). Details on the muon system (target spectrometer) and

muon range system (forward spectrometer) can be found in Ref. [44]. The

muon system as well as muon range system are shown in Figure 3.11.

3.4.1.8 Electromagnetic Calorimeter (EMC)
The EMC will be a compact calorimeter that has three sections: the backward

endcap, the barrel, and the forward endcap. The EMC is shown in Figure 3.12,

and its purpose will be to reconstruct photons, electrons, and hadrons with en-

ergies from a few MeV to several GeV. The EMC will measure the energy

deposits of these particles through electromagnetic showers. The EMC will
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Figure 3.11. The Muon System and Muon Range System (highlighted blue) in target

and forward spectrometers, receptively. Image is taken from Ref. [44].

be built from lead-tungstate (PbWO4, PWO-II) crystals, an inorganic scintil-

lator known for its high density, energy resolution, and fast repose. Using

these crystals at temperature -25 ◦C instead of room temperature, can increase

the light yield by a factor of four [17]. Each PWO-II crystal has a length of

200 mm. The total number of crystals will be 11360 in the barrel, 592 in

the backward endcap, and 3600 in the forward endcap. Instead of photomul-

tiplier tubes, special photo-detectors will be used to detect light: Avalanche

Photodiode (APD) will be employed in the barrel part, whereas Vacuum Pho-

totriodes (VPTs) will be used in the forward endcap. More details about the

electromagnetic calorimeter can be found in Ref. [45].

Figure 3.12. Drawing of the Barrel and Endcap EMC in the target spectrometer. Image

is taken from Ref. [45].
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3.4.2 Forward Spectrometer (FS)

The forward spectrometer consists of various planar-shaped sub-detectors ar-

ranged along the beam pipe. The dipole magnet provides the magnetic field

covering the region in θ ≤ ±10◦ in the horizontal plane, defined from the

beam pipe, and θ ≤ ±5◦ in the vertical plane. The dipole will provide maxi-

mum bending power of 1 Tm.

The deflected particles will be detected in the Forward Tracking Stations

(FTS) for momentum measurements. For particle identification, the forward

ToF (FTOF) will be used for relatively slow particles whereas the forward

Ring Imaging CHerenkov (FRICH) for high momentum particles. In ad-

dition, a Shashlik-type Forward Spectrometer Electromagnetic Calorimeter

(FSC) will measure energy deposits, whereas the Muon System and Muon

Range System (FRS) will identify muons. The Luminosity Detector (LMD) is

located upstream of the beam pipe. In the following, sub-detectors in FS will

be discussed in detail.

3.4.2.1 Forward Tracking Stations (FTS)
The main purpose of FTS will be to detect particles at low polar angles es-

caping the target spectrometer. The FTS will consist of six planar tracking

stations named FT1, FT2,..., FT6. These stations will be located along the

beam axis at 295.4 cm, 327.4 cm, 394.5 cm, 438.5 cm, 607.5 cm, and 647.0

cm, respectively. One pair of stations (i.e. FT1, FT2) will be located upstream

of the dipole magnet, one pair of stations (i.e. FT3, FT4) will be inside the

dipole magnet, and one pair of stations (i.e. FT5, FT6) will be downstream

of the dipole magnet. The stations inside the dipole magnet will bend charged

particles, and the deflection will be used to measure the momentum. The ac-

ceptance of FTS will be ±10◦ in the horizontal plane and ±5◦ in the vertical

plane with respect to the beam axis. The FTS is shown in Figure 3.13.

Figure 3.13. The FTS in the forward spectrometer. Image is taken from [47].
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The layout of each tracking station will be based on straw tube modules. The

design and detection principle of FTS will be similar to the STT with tube di-

ameter of 10.1 mm. The straws are glued together in staggered double-layers

either as 2× 16 (32 straws) or 2× 12 (24 straws), where the latter configura-

tion surrounds the beam pipe. In each station, there are four detection planes

made by stacking modules beside each other. For example, in FT1, each plane

have 1× 10 modules covering the 1338× 640 mm2. The placement of these

modules in each plane will be based on their orientation with respect to the

beam axis: modules in the first and fourth planes are in the vertical position,

whereas the modules in the second and the third planes are inclined at ±5◦.

The inclined modules are intended for the 3D reconstruction of particle tracks.

The modules operate independently of each other which helps to repair or re-

place these modules whenever it will be necessary. In the first phase of opera-

tion of PANDA, the FT5 and FT6 will be replaced by the Outer Tracker from

LHCb experiment [46]. More details about FTS can be found in Ref. [47].

3.4.2.2 Dipole Magnet
A large aperture dipole magnetic will be used together with the Forward Track-

ing Stations (FTS). The dipole magnetic will have a magnetic rigidity of 1 Tm

and it will will cover the region < ±10◦ horizontal and < ±5◦ vertical to the

beam axis. The dipole will be part of the accelerator lattice, hence, it will syn-

chronously ramped up or down along with the ring magnets. More details can

be found in Ref. [34].

3.4.2.3 Forward Time-of-Flight (FToF)
The FToF has the same purpose, operation principle and design as the BToF

in the target spectrometer. However, it will be built as a planar detector and

will be located at z = 7.5 m from the interaction point. The FToF will be made

from the plastic scintillation slabs (e.g. Bicron 408) to cover a sensitive area of

5.6 m×1.4 m. There will be 66 such slabs with variable widths: 20 innermost

slabs surrounding the beamline will have a width of 10 cm, while the outer-

most will have a width of 20 cm. The slabs with shorter widths are intended to

handle the expected high particle flux close to the beamline. As for the BToF,

the design goal will be to achieve a time resolution better than 100 ps. The

timing information from the FToF, combined with position information from

the FTS, will provide excellent particle identification of hadrons such as π,K,

and p by using the time-of-flight measurements. A good p/K and K/π separa-

tion are achievable up to momenta 4.3 GeV/c and 3 GeV/c, respectively. More

details can be found in Ref. [48].

3.4.2.4 Forward Ring Imaging Cherenkov (FRICH) Detector
The FRICH will be similar in design and operation as of Barrel DIRC. It will

be used to identify particles such as π,K and p with large momenta. The

FRICH consists of two radiators such as silica aerogel and Freon (C4F10) gas
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with indices of refraction as 1.0304 and 1.00137 respectively. It will provide

p/K and K/π separation in a broad momentum range of 2 GeV/c to 15 GeV/c.

More details in Ref. [43].

3.4.2.5 Forward Spectrometer Electromagnetic Calorimeter (FSC)
The FSC is a sampling calorimeter indented to detect high momentum parti-

cles (photons and electrons) with high resolution and efficiency. The FSC will

have a shashlik, or sandwich, design, which means that it will have alternat-

ing absorber-detector modules that sample the electromagnetic showers. The

absorbers are made of lead, and the detectors of organic scintillating crystals.

The incoming particles will interact with the lead plates creating an electro-

magnetic shower that will be detected in the scintillation crystals. Scintil-

lation crystals will be readout with wavelength shifting fibers coupled with

photomultiplier tube (PMTs). The FSC will cover polar angles of θ < 10◦
horizontally and < 5◦ vertically with respect to the beam axis. The FSC will

be placed at a distance of 7-8 m from the target just behind the FRICH. See

more details can be found in Ref. [49].

3.4.2.6 Muon Range System (MRS)
The MRS is similar to the muon detector used in the target spectrometer (see

Figure 3.11). The MRS will detect forward going muons. The basic principle

is to absorb all particles except muons in an absorber, for example, iron (Fe),

and then detect them using aluminum Mini Drift Tubes (MDT). The stopping

power of the absorber will be approximately 1.5 GeV per meter of iron for

relativistic muons at dE/dx = 2 MeV/g. The MRS will be built from interleaved

layers of absorber material (16 Fe plates at 30 mm apart) and detector material

(576 MDTs in total) layers. The MRS will be placed approximately 9 m from

the target system. More details can be found in Ref. [44].

3.4.2.7 Luminosity Detector (LMD)
The LMD [50] will be placed at 11 m downstream of the target to measure the

beam luminosity. The LMD, consisting of pixel sensors covering the region

between 3 mrad and 8 mrad with respect to the beam, will specifically detect

elastically scattered antiprotons at small angles where the Coulomb effects

dominate. The cross-sections at these angles are known with high-precision

and can therefore be used to calculate and monitor the luminosity.

3.4.3 Internal Targets

The target system of PANDA consists of internal targets, vacuum systems,

and auxiliary systems. The choice of internal target is optimized taking into

account several constraints, such as high density to meet designed high interac-

tion rates. At the same time, the target must be thin enough to avoid interaction
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losses to the detector or DAQ dead time. The design goal is to achieve a target

density of 4× 1015 atoms/cm−2 or more. Due to these constraints, two types

of internal targets are under development: the Cluster-jet Target and the Pellet
Target. These targets can be made of hydrogen (H), deuterium (H2) or any

heavier (noble) gas up to the Xenon (Xe54). The Figure 3.14 shows schematic

of these targets.

Figure 3.14. Cluster-jet target as well as pellet target at PANDA.

The design parameters of internal targets are outlined in Ref. [51]. I will also

discuss the targets in the following sections.

3.4.3.1 Cluster-jet Target
In the cluster-jet target, a pre-cooled gas is forced to pass through a Laval-

type nozzle (a convergent-divergent nozzle) (Figure 3.15. Due to adiabatic

expansion, the gas cools down further and forms a stream of particle clusters

due to condensation, hence the name cluster-jet target.

Figure 3.15. Laval-type nozzle for Cluster-jet Target. Figure is taken from Ref. [1].
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The size of the clusters is strongly influenced by operating conditions such as

temperature (T ) and pressure (p). In addition, the nozzle diameter affects not

only the size of the cluster but also its yield. For a hydrogen cluster-jet tar-

get, the typical temperature and pressure are T0 = 25−35 K and p0 ≤ 10 bar,

respectively, which will result in a cluster size of 103 − 105 atoms per cluster

[51]. In the Münster-type cluster-jet target, a pressure of p0 ≤ 25 bar results in

liquefied hydrogen gas before entering the nozzle. The density of the cluster-

jet then reaches 1×1015 atoms/cm2 that is achieved more than 2 m behind the

jet nozzle [51]. After leaving the nozzle, the jet stream is first shaped using a

conical skimmer and a collimator before entering the cluster-jet vacuum pipe.

The jet stream is later injected into an interaction point where interactions oc-

cur. A schematic picture of the cluster-jet target is shown in Figure 3.14.

Table 3.1. The properties of the cluster-jet and pellet target beam for PANDA. The
data is based on already achieved results, the table is taken from [51].

Cluster-jet Target Pellet Target

effective target thickness 1×1015 atoms/cm2 5×1015 atoms/cm2

volume density distribution homogeneous granular

size transversal to p beam 2−3 mm ≤ 3 mm

size longitudinal to p beam 15 mm ≤ 3 mm

target particle size nm - μm scale 20 μm

mean vertical particle distance ≤ 10μm 2−20 mm

target material H,H2, ...Xe(except He) H,H2,He,N2,Ar

Table 3.1 shows the properties of both cluster-jet as well as pellet targets.

The parameters listed below have already been achieved. One example is

the cluster thickness of > ×1015 atoms/cm2, which is better than the design

parameters. Since the cluster-jet target is under constant development, one can

expect improvements in various cluster-jet parameters.

3.4.3.2 Pellet Target
The pellet target consists of tiny frozen droplets (i.e. pellets) of hydrogen

gas. The pellets are created by injecting cryogenic liquid into a gas, usually

Helium, of the same element close to triple-point conditions through a vibrat-

ing nozzle. The vibration breaks down the liquid stream into small droplets of

cryogenic gas, which freeze into solid pellets while passing through a thin tube

called a vacuum injection capillary. The stream of pellets is further shaped by

a skimmer leading to the interaction point. There are three primary reasons for

using a pellet target: (i) high effective target density, (ii) very localized beam-

target interaction point, and (iii) the possibility to track a pellet at the time of

particle interactions. By fulfilling (ii) and (iii), the position of pellet can be

determined very precisely. The pellets have a diameter of 20 μm with an areal

density of 5× 1015 atoms/cm2 [51] which are essential to attain required lu-
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minosities for various physics studies. A schematic picture of the pellet target

is shown in Figure 3.14.

3.4.3.3 Target Beam Dump and Vacuum System
The jets or pellets are pushed to the interaction point where they collide with

the antiproton beam. The remnants of the target is collected in the beam

dump. However, the interaction inevitably leads to evaporation of gas from

the target that dissipates to the beam pipe. There, the vacuum conditions are

maintained using a differential pumping system which is equipped with hy-

brid turbo molecular pumps. The beam dump consists of three differentially

pumped vacuum stages, each equipped with turbo molecular pumps and sep-

arated by orifices. These orifices are large enough to let pass the target beam,

but as small as possible in order to minimize a back-flow of residual gas to the

PANDA interaction point. There are several vacuum pumps to remove target

gas inside the beam pipe. In Section 3.5, the effects of residual gas on the

target, especially the cluster-jet target, as well as the solutions to this problem

are discussed.

3.5 Effective Target Profiles

The cluster-jet target and the pellet target, have their pros and cons. In both

target systems, an important issue under discussion is the accumulation of tar-

get gas inside the beam pipe which extends the effective volume of the target.

That results in beam losses and beam heating, and affect the background con-

ditions in physics studies. In the following, we will discuss how to mitigate

the problem of residual gas inside the beam-pipe, with a focus on cluster-jet

target.

The issue of residual gas can be mitigated by introducing a cryogenic pump

located 3 m upstream of the interaction point (IP). Apart from the removal of

residual gas, the main purpose of the cryogenic pump is to preserve the quality

of antiproton beam that is essential for any physics studies. The standard or

original geometry of the beam-pipe is denoted as the NormalIP.

The NormalIP is the original design of the beam pipe around the IP. Previ-

ously, a geometry called the BigIP was investigated, see e.g. [52]. The BigIP

geometry has been discarded since it required to redesign the MVD detector.

The beam pipe is narrowed down to 20 mm diameter at the IP giving a suf-

ficiently small interaction region. This configuration is shown in Figure 3.16

with the cryogenic pump highlighted in yellow. In the next section, the vac-

uum simulation for NormalIP configuration is discussed.
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Figure 3.16. The NormalIP configuration, the original IP geometry at PANDA.

3.5.1 Vacuum Simulations

The implementation of vacuum systems are under investigation by the PANDA

group at Westfälische Wilhelms-Universität Münster, Germany [1]. The Nor-

malIP configurations with and without using a cryopump make two different

scenarios. The vacuum simulation studies simulate the target and the residual

gas inside the beam pipe. These scenarios are named as the following:

• NormalIP

• NormalIP+Cryo

The vacuum scenarios are based on (i) inclusion/exclusion of vacuum pumps

to extract the residual gas, (ii) the corresponding density measurements of

residual gas inside the beam pipe and (iii) the target profile based on density

measurements.

The Figure 3.17 shows the density profile of both target and residual gas

inside the beam pipe. One can see that effect of the cryopump downstream of

the beam pipe is not significant. In order to perform realistic simulations for

various physics studies, one should take into account the impact of target gas.

3.6 Data Analysis Tools

The software environment of the PANDA experiment consists of FairRoot[53]

and PandaRoot [54], both based on the ROOT framework [55]. The Fair-

Root framework is common to all FAIR experiments i.e. NuSTAR, CBM, and

PANDA. FairRoot contains the external software dependencies and logistical

support to facilitate the operation of these experiments e.g. it provides detec-

tor geometries, event generation, particle transport, and event display. Fur-
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Figure 3.17. Vacuum simulation of target and residual gas with (magenta curve) and

without (blue curve) cryopump, the NormalIP. The dip in magenta curve shows the

location of cryopump. The data is provided by cluster-jet target group at Münster [1].

thermore, it provides an interface to software packages for other experiments.

PandaRoot, on the other hand, contains packages and functions specific to the

PANDA experiment.

3.6.1 The PandaRoot Analysis Chain

The complete data analysis chain of PandaRoot and FairRoot consists of sev-

eral stages: simulation, digitization, reconstruction, and particle identification.

This follows by analysis of data retrieved from previous stages. The steps are

shown in Figure 3.18, along with a brief description of each step.

3.6.1.1 Simulation
In the simulation stage, the generation of particles produced in antiproton-

proton annihilations is simulated, along with subsequent decays of these par-

ticles. In addition, this stage includes the propagation of particles through the

detector and interactions with active and passive material. The antiproton-

proton reactions are simulated using event generators, that take the dynamics

of a given model and kinematics into account. The output from the event gen-

erators is in the form of particle four-vectors, decays and vertices of the parti-

cles for a particular reaction. Several event generators are available in Panda-

Root such as EvtGen [56], UrQMD [57], Pythia [58] and FTF [59]. For this

study, the EvtGen generator is used to generate p̄p → Λ̄Λ reactions. EvtGen

is specialized in generating physical events based on specific decay models

e.g. flat phase space, data parametrizations or other phenomenological mod-
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Figure 3.18. The PandaRoot and FairRoot data analysis chain (top to bottom). The

output of each stage is stored into a ROOT file. Image is adapted from Ref. [18].

els. Once the event kinematics is generated, the final state particles are prop-

agated through full detector material using the GEANT4 package [60] which

gives the precise information about the particle position, momentum, energy

deposition, and time in various sub-detectors. This information is stored as

MC truth, called MCPoint, with infinite precision. Detector effects such as

noise are absent at this stage.

3.6.1.2 Digitization
A digitizer program is used to mimic the real detector response to construct

realistic quantities in various sub-detectors. The MCPoints from the previous

stage are converted into realistic hits, taking the granularity of the detector into

account. Furthermore, energy deposits are converted into pulse heights. Each

detector subsystem has its own specialized digitizer which coverts MCPoints

in that detector as digis or hits. For example, in the case of STT, the MCPoints

after digitization are stored as STTHits by the PandaRoot.

3.6.1.3 Reconstruction
At the reconstruction stage, the digitized hit positions from the previous stage

are used to build tracks along the particle trajectories. In addition, hits in

the calorimeter crystals are combined into clusters. In PandaRoot, the track

reconstruction is a two-stage process: the tracking finding (often referred to as

pattern recognition) and the track fitting (or track parameter estimation).

During track finding, hits positions from the digitizer are grouped to form

clusters of hits known as track candidates by a track finding algorithm. In

PandaRoot, a track candidate is stored as a PndTrackCand object. The choice

of track finding algorithm may depend on whether the particle originates in
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the beam-target interaction point (primary vertex) or away from it (secondary

vertex). The former puts a strong constraint on the track building process.

Hence, an algorithm can be either a primary or a secondary track finding algo-

rithm. Several track finding algorithms exist in PandaRoot that fulfill different

purposes, e.g. tracking of particles from primary or secondary vertices, use

for online or offline reconstruction, as well as idealized tracking using Monte

Carlo information. In addition, different algorithms are used in the target spec-

trometer and forward spectrometer. In this section, the tracking algorithm used

in the target spectrometer will be discussed. For a full track reconstruction in

PANDA detector, a dedicated algorithm is needed in the forward spectrome-

ter. Currently, no such algorithm has been established and therefore, the Ide-

alTrackFinder is the default tracking algorithm in the forward spectrometer.

In the track fitting, the parameters of a track candidate are determined. In

PandaRoot, a fitted track is stored as a PndTrack object which contains fitted

parameters such as momentum, charge, and position at the first and the last

hits of the track. The fitting procedure takes into account the material effects

and energy loss inside the detector e.g. Bremsstrahlung, multiple scattering,

ionization loss, etc. The most commonly used track fitting algorithm is the

Kalman Filter [61], a recursive filter that predicts the current state of track,

i.e. track parameters, based on previous measurements. This improves the

efficiency of track fitting.

3.6.1.4 Particle Identification
At this stage, all available information about the detector signals within a given

track is combined to identify the particle associated with the track. For this,

one needs to find the mass (m) and charge (zq) of a particle. In general, the

z = 1 for the stable and pseudo-stable particles measured in the detector. The

mass can be calculated by using relativistic equation of motion p = m0cγβ
where β = v/c and γ = 1/

√
1−β 2 if the momentum (p) is known.

The velocity v of charged particles can be determined by various detectors

depending on the momentum range. For this purpose, information such as the

time-of-flight (τ ∝ 1/β ), the Cherenkov angle (cosθc = 1/βn) or the energy

loss (dE/dx) are utilized. Thus particle identification is subject to the type of

detector used to measure the particle velocity.

A local PID probability (P) is independently calculated for each particle

hypothesis e−, μ−, π+, K+ and p, including their antiparticles, in a partic-

ular sub-detector. For each hypothesis, the local probabilities are combined

using a likelihood function. From Bayes’ theorem, a global PID probability is

calculated that can be accessed in the later analysis stage. These global PID

probabilities can be further optimized during analysis [62], by using different

criteria such as Loose: P ≥ 0, Tight: P ≥ 0.5 or Ideal: P = 1. In this thesis, the

Ideal PID criteria are used which means that a matching is performed using

Monte Carlo truth information. The correct particle is the assigned its identity

by setting P=1.
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3.6.1.5 Analysis
At this stage, the event selection (see, for example, Section 11.2) and param-

eter estimation, e.g. spin observables, are performed. The first task is to sep-

arate the signal, i.e. the reaction of interest, from the background. By using

various selection criteria, the best particles are chosen to reconstruct the full

event topology. The Rho analysis package, an integral part of PandaRoot, is

used to perform combinatorial calculation, mass selection criteria, kinematic

fits, etc. In the end, the final output is stored in ROOT files.

3.6.2 Machine Learning Tool Chain

For machine learning tasks, a comprehensive programming framework is needed.

Such frameworks exist and are being developed in almost all programming

languages. In C++, for example, one framework is called Toolkit for Multi-

variate Data Analysis in ROOT (TMVA) [63]. In Python, several frameworks

exist such as PyTorch [64], TensorFlow [65], etc. In this thesis, PyTorch is

used for data processing and neural network training.
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4. Track Reconstruction

A particle beam is accelerated and collides either with another beam or with

a target material. As a result, new particles are emitted from the interaction

region in all directions. Several detectors are carefully placed around the inter-

action region to register their traces. Charged particles interact by ionization

with the detecting material, giving position measurements along their trajec-

tories. The first wave of particles is called primary particles, and their point of

production is called the primary vertex or interaction point. The primary par-

ticles can in turn produce secondary particles, either by decaying or by inter-

acting with the detector material. Secondary vertices from decays, which are

discussed in some detail in this thesis, are denoted decay vertices. A snapshot

of a collision and the subsequent interaction between particles and the detec-

tor, is called an event whose reconstruction is a prerequisite to understanding

any physics process. The event reconstruction involves both track- and vertex

reconstruction of all particles. In this thesis, however, we will focus on track

reconstruction algorithms.

4.1 Track Reconstruction

Track reconstruction is a process of building particle trajectories in an event.

After introducing some basics about track reconstruction in Section 3.6.1.3, I

will now go into more detail.

Pattern recognition aims to reconstruct particle trajectories from the posi-

tion measurements, called hits, provided by detectors. Hits are grouped into

clusters or track candidates, which represent the passage of a particle.

There are two main categories of pattern recognition algorithms: (i) global

methods, (ii) local methods. This categorization is based on how algorithms

handle particle hits in the detector. The global methods process hits simultane-

ously i.e. independent of the order of the hits. The global methods are parallel

and find track candidates all at once in an event. Examples of global methods

are Conformal Mapping [66], Hough Transform [67, 68], Legendre Transform

[69], Cellular Automaton [70, 71] and Artificial Neural Networks [72]. The

local methods depend on predetermined seeds, i.e. a small segment of tracks

taken as starting point, to find track candidates. These methods process hits

sequentially to extend these seeds into track candidates. Local methods are

sequential and find tracks one by one in an event. For example, Track Road,

Track Following and Kalman Filter are local track-finding algorithms [73].
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Global methods aim to avoid seeding bias during track finding as opposed to

local methods. One can find an extensive exposition of these algorithms in

Ref. [73, 74, 75].

Algorithms can also be categorized based on the origin of the particle tra-

jectory. Let’s first discuss the primary track finders. In general, particle tracks

in the detector come from the beam-target interaction point, or the IP, and are

called primary tracks. These tracks are either created in the primary interac-

tion, or in strong or electromagnetic decays of very short-lived particles which

on an experimental scale can be consider to decay instantaneously at the IP.

A track originating from the IP puts a strong constraint in the track finding

procedure since the combinatorics is drastically reduced. The algorithms that

can only reconstruct primary tracks are called primary track finders.

For particles that are created in a secondary vertex, for example through a

decay, a secondary track finder is required. An unstable particle with a longer

life-time, for example a hyperon, flies a measurable distance from the IP be-

fore decaying, thus creating a secondary vertex. The reconstruction of such

a track is much more complex, since the point of origin is unknown, hence

unconstrained. Hence, the possible combination of hits that can form a track

is very large compared to the case of a primary track.

4.2 Track Evaluation

Track evaluation is necessary to ensure the reconstructed tracks accurately

represent particle trajectories. One way to assess the quality of track recon-

struction is by calculating the overall tracking efficiency, here referred to as

the physics efficiency and track purity. The physics efficiency provides infor-

mation on how well the tracking algorithm can find all the particle tracks in

the detector. On the other hand, the track purity provides information on how

well the tracking algorithm can separate the signals produced by true particle

tracks from noise or other background signals. To assess the performance of

the tracking algorithm itself, a conditional tracking efficiency, here referred

to as the technical efficiency, can be used in which a certain number of min-

imum hits are required to reconstruct a particle. These quantities will be de-

fined using the evaluation scheme that closely follows the ATLAS community

[78, 79]. Although PANDA also has its evaluation scheme, which is described

in Ref. [18]. However, the PANDA scheme is not used in this thesis. Let us

first define the following variables:

• Nparticles(selected) is the number of generated particles in the detector,

will be referred as particles. The label selected refers to particles

generated within STT acceptance.

• Nparticles(selected,matched) is the number of particles matched to at

least one reconstructed track.
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• Nparticles(selected,reconstructable) is the number of generated parti-

cles that leave at least seven hits in the detector, will be referred to as

the reconstructable particles.

• Nparticles(selected,reconstructable,matched) is the number of recon-

structable particles that are matched to at least one reconstructed track.

• Ntracks(selected) is the number of reconstructed tracks containing at

least five or six hits, will be referred to as reconstructed tracks.

• Ntracks(selected,matched) is the number of reconstructed tracks that

are matched to a particle.

A particle is considered matched to a reconstructed track if more than (i) 50%

of the hits in the reconstructed track belongs to the same true particle, (ii) 50%

of the hits in the matched true particle are found in the reconstructed tracks.

This is known as two-way matching scheme.

The physics efficiency is the fraction of particles that match at least one

reconstructed track (εphys). The εphys is given as follows:

εphys =
Nparticles(selected, matched)

Nparticles(selected)
(4.1)

The technical efficiency is the fraction of reconstructable particles that match

at least one reconstructed track (εtech.). The εtech. is given as follows:

εtech. =
Nparticles(selected, reconstructable, matched)

Nparticles(selected, reconstructable)
(4.2)

Finally, the track purity is defined as the fraction of reconstructed tracks that

match a selected particle. The track purity is given by the following expres-

sion:

Purity =
Ntracks(selected, matched)

Ntracks(selected)
≡ 1−Fake Rate (4.3)

In addition, the fake rate or ghost rate is defined as the fraction of reconstructed

tracks not matching any particle tracks, while the clone rate is defined as the

rate at which a particle track is matched to more than one reconstructed track.

One can choose any fraction (> 50%) of hits during matching. In this thesis,

we will use three different matching fractions (MF) such as 50% (loose), 75%

(moderate), and 95% (tight). The 50% MF is a special case as it can result in

the double matching of tracks; hence we add a small number, 0.00001, to the

MF to avoid double matching.
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4.3 Track Reconstruction in PANDA

Currently, various track reconstruction algorithms are under development. Only

a few have been established within the standard PandaRoot software. Almost

all, except the IdealTrackFinder, are realistic tracking algorithms, in the sense

that they use the same information as will be available from real data. We will

discuss them briefly in the following sections.

4.3.1 The IdealTrackFinder

The IdealTrackFinder is a reconstruction algorithm that utilizes the corre-

sponding MC track information to build tracks. It takes the momentum of

the first and last points (MC Points) from an MC track and applies Gaussian

smearing on the momentum. By default, the Gaussian smearing corresponds

to a mean of zero and a standard deviation of 5% of the MC truth momentum.

The smeared momentum is used to build a reconstructed track.

The IdealTrackFinder can be employed in various parts of the PANDA de-

tector, and different selectors are used for this purpose. In PandaRoot, each

selector is implemented as a functor, and one can extend the functionality of a

functor as needed. The predefined functors are listed below:

IdealTrackFinder – Functors
1. Standard Track Functor ≥ 4 MVD or ≥ 6 MVD+STT+GEM hits.

It is the default functor in PandaRoot.

2. Only STT Functor ≥ 6 STT hits: To reconstruct tracks in STT only.

3. FTS Track Functor ≥ 6 FTS hits: Requires at least 6 hits in the

forward tracking stations (FTS).

4. No FTS Track Functor: This functor excludes the forward spec-

trometer altogether i.e. no hits are included from the FTS.

5. All Tracks Functor: This functor is designed to accept everything

for reconstruction as long as there is at least one hit available in the

tracking detectors.

The IdealTrackFinder can be used for both secondary and primary tracks as it

builds tracks based on the Monte Carlo truth information. Thus it represents a

best-case scenario for realistic track finders.

4.3.2 The BarrelTrackFinder

The BarrelTrackFinder is a primary track finder, i.e. it assumes that the re-

constructed track comes from the IP [80]. The BarrelTrackFinder reconstructs

particle tracks only in the central tracking system (i.e. MVD+GEM+STT),

hence the name BarrelTrackFinder.
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The BarrelTrackFinder is a combinatorial track-following algorithm that

takes the interaction point (IP) as its starting point and includes hits one by

one by performing a circle/helix fit, thus gradually extrapolating the track.

4.3.3 The SttCellTrackFinder

The SttCellTrackFinder is a secondary track finder by design, as it does not

rely on the interaction point to reconstruct tracks. The SttCellTrackFinder

performs pattern recognition based on Cellular Automaton [81] and parameter

estimation using Riemann mapping [82]. The SttCellTrackFinder in its earlier

form builds tracks only in the STT detector [83, 84]. It has been extended to

include the MVD and GEM detectors as well [85], though the extension needs

further refinement before being used on a larger scale.

Currently, the SttCellTrackFinder is under development, and it can only

reconstruct tracks in the xy projection of the detector, hence estimating the

transversal component of track parameters. The longitudinal momentum re-

construction can however be done separately by the so-called PzFinder algo-

rithm, which is explained in the coming section.

4.3.4 The PzFinder

The PzFinder is a set of algorithms for 3D track reconstruction. It extracts

the longitudinal component of track parameters from the 2D input provided

by an algorithm, for example the IdealTrackFinder or the SttCellTrackFinder.

In the STT, the transversal track parameters are obtained by hits in the straight

sections of the STT. However, a few layers of the STT are skewed at ±2.9◦
with respect to the z−axis. This can be exploited to extract longitudinal track

parameters (z and pz). For this purpose, the PzFinder was developed to com-

plement the SttCellTrackFinder. It can work independently with another 2D

algorithm, provided it contains sufficient hits to build a track.

The PzFinder uses the hits in the skewed straws to extract the z−position by

isochrone alignment procedure. This procedure is explained in Ref. [10, 86].

As a result of this procedure, the PzFinder ends up with two possible values of

the z−position that creates left/right ambiguity. To resolve this ambiguity, the

PzFinder uses three different methods to choose the right solution: (i) Hough

transformation [87], (ii) Combinatorial path finder [73], and (iii) Recursive

annealing fit [73]. Among these three methods, Recursive annealing fit gives

high performance in terms of efficiencies and purities greater than 95% [86].
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4.4 Computing Challenges at PANDA

The computing challenge in track reconstruction mainly arises from the physics

studies and the design features of an experiment. The tracks produced in

PANDA, at a beam momentum of up to 15 GeV, have significantly different

features from those from high energy physics experiments such as the Large

Hadron Collider (LHC). In PANDA, we expect far fewer tracks per event

(Ntracks < 8 in exclusive studies) as compared to LHC experiments. Moreover,

PANDA tracks are often strongly curved, spiraling and overlapping. The reac-

tion rate at PANDA is dominated by hadronic reactions where distinguishing

signal from the background is complex. We will discuss two crucial features

of PANDA that may pose a challenge during track reconstruction.

4.4.1 Interaction Rate

The interaction rate depends on the beam intensity and the target thickness,

and is defined as the number of interactions (events) per second when a beam

collides with another beam or target. The interaction rate can be calculated

from the total production cross-section (σ ) times the beam luminosity (L ).

R := σ ·L (t) =
dN(t)

dt

For a beam-target experiment such as PANDA, the instantaneous luminosity

is defined as:

L (t) = N(t) ·ρ(t) · f

where the N(t) is the number of antiprotons ( p̄) in the beam, ρ is the target

density and f is the beam frequency [88].

A high interaction rate often results in high track multiplicity, thus creating

a dense signal environment inside the detector. At PANDA, the interaction

rate will be up to 20 MHz. A reconstruction algorithm may require more

computing time and resources if the number of hits per event is large.

4.4.2 Decay Signatures

The Figure 4.1 shows how the primary particles e.g. hyperons (Λ, Ω, Ξ) are

produced in pp̄ annihilations at PANDA experiment and further decay into

secondary particles. A particular decay channel leaves a distinct signature (a

cascade of trajectories) inside the detector.

These physics signatures or signals become complicated to reconstruct due to

the presence of neutral particles (dashed lines), similar final states and deep
decay topologies and multiple displaced vertices as shown in Figure 4.1: (a),

(b) and (c). Moreover, the background in PANDA have features very similar
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Figure 4.1. Hyperon (Λ,Ξ,Ω) production and decay channels at PANDA. The image

is credited to Ref. [85].

to the reactions of interest. Thus, a straightforward discrimination of signal to

background (S/B) is challenging. The combination of exclusive event recon-

struction, complicated topologies, and low momentum / high curvature tracks

is a special challenge for PANDA.
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5. Machine Learning (ML)

Machine learning is a sub-field of artificial intelligence (AI) to study how ma-

chines, e.g. computers, can learn through experience just like humans do. The

term machine learning is first coined by Arthur Samuel [89] in 1959. The

following statement about machine learning is widely attributed to him.

"A field of study that gives computers the ability to learn without being

explicitly programmed".

Machine learning consists of tools and techniques to extract meaningful infor-

mation, such as patterns and relationships, by learning through data that may

lead to making predictions, decision-making, and reasoning based on this in-

formation. To formulate a machine learning problem, one needs a data set and

a mathematical model or a learning algorithm. Many real-world problems can

be formulated in terms of machine learning e.g. function approximation, pat-

tern recognition, computer vision, machine translation, object tracking, and

identification are a few such examples. Each problem has distinct data that

require a suitable mathematical model and a learning type.

5.1 Learning Types

The machine learning types encapsulate how a machine learning algorithm can

experience or see the data. These types are named supervised, unsupervised,

and semi-supervised machine learning. The latter is a combination of the first

two types. We will briefly discuss the first two categories in this thesis (see

Figure 5.1).

In supervised learning, the objective of a machine learning algorithm is to

learn through a labeled dataset that comprises inputs and the desired outputs,

or labels, hence the name labeled dataset. The learning algorithm tries to map

the inputs to the output to develop a general understanding of the underlying

relationship between the inputs and outputs. Over several examples, the al-

gorithm can learn hidden patterns in the data. The algorithm will correctly

predict the result when unseen data are provided. The whole process, known

as model training, is repeated over several instances of the dataset until the ma-

chine learning algorithm reaches a certain performance [90]. Many algorithms

exist under the supervised learning umbrella, such as support vector machines
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(SVMs), decision trees (DTs), and artificial neural networks (ANNs). Prob-

lems such as regression, classification, and time-series prediction usually fall

into the domain of supervised learning.

Supervised 
 Learning

Unsupervised
Learning

Critic
Er

ro
r

Input
(Data with labels)

Input
(Data without labels)

Output Output
(Mapping) (Classes)

Figure 5.1. Schematic diagram of supervised and unsupervised machine learning.

In unsupervised learning learning, the data set is unlabeled i.e. it does not

contain the desired output. Therefore, there is no way to supervise the learning

algorithm. Instead, the learning algorithm attempt to learn patterns and rela-

tionships in the data to solve a problem. In cluster analysis, unsupervised algo-

rithms self-organize these patterns or relationships into distinct classes based

on the similarities or differences e.g. grouping objects based on their colors

or shapes. The most commonly used algorithms for clustering are k-Means

and DBSCAN [91]; for dimensionality reduction, common algorithms are

principal component analysis (PCA) and t-distributed stochastic neighbor em-

bedding (t-SNE). In detector simulation, algorithms like Auto-encoders (AEs)

and Generative Adversarial Networks (GANs) are the most common models

to generate new data. In addition, unsupervised learning is used in anomaly

detection, dimensionality reduction, speech recognition, detector simulations,

etc. Ref. [92, 93] provides more details on supervised and unsupervised learn-

ing.

5.2 Deep Learning
Deep learning is a sub-field of machine learning, comprised of deep neural

networks as a base learning algorithm. A neural network consists of an in-

put layer, one or more hidden layers, and an output layer. The architecture

of a neural network can be understood in terms of the width and the depth of

the network. The width defines the number of neurons arranged in a layer,

whereas the depth describes the number of hidden layers in the network. In

most cases, the terms deep learning and deep neural networks are used inter-

changeably. In the following, we will discuss deep neural networks and their

applications in more detail.
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5.2.1 Deep Neural Networks

The basic building block of a neural network is called an artificial neuron, a

simplified computation model of a biological neuron. The first computational

model, called Perceptron, was introduced in Refs. [94, 95] in the 1940s. This

model mimics the functionality of a biological neuron by applying a step func-

tion, also known as activation function, on the aggregated weighted inputs

from other neurons and generates a binary output using a particular thresh-

old value. The weights of the inputs represent the strength of the connection

between two neurons. In mathematical terms, the Perceptron model can be

defined as follows:

ŷ = f
(
wT x+b

)
(5.1)

where x= [x1,x2, ...,xn]
T is the input vector, w= [w1,w2, ...,wn]

T is the weight

vector, b is the perceptron bias and f is the step function. Schematic diagram

of a Perceptron is shown in Figure 5.2.

Figure 5.2. Computational model of a neuron, the Perceptron.

The modern version of artificial neurons, called sigmoid neurons, resembles

Perceptrons with slight modifications. It is now possible to introduce more

complex activation functions such as sigmoid, hyperbolic tangent (tanh), rec-

tified linear unit (relu), etc. The activation functions are a non-linear mapping

from inputs to outputs that yield a continuous output within an interval e.g.
the sigmoid activation function produces a continuous output between 0 and

1, and in the case of tanh the output lies between −1 and 1.

Arranging several neurons together into layers results in a neural network.

A simple feed-forward neural network has an input layer (X), several inter-

mediate or hidden layers (HL), and an output layer (y). The networks with

HL > 3 are called deep neural networks; hence the term deep learning is as-

sociated with these networks. The earliest examples of neural networks are

Multilayer Perceptrons or Dense Neural Networks (DNNs). These networks
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are also called feed-forward, as the information flows from the first layer to

the last layer without any feedback loops. A schematic diagram of the feed-

forward network is shown in Figure 5.3.

Output layerInput layer Multiple hidden layers

Weighted
Connections

Figure 5.3. Schematic of a Dense Neural Network.

The goal of supervised DNN is to approximate some function f ∗ which de-

fines a mapping y= f (x;θ) and learns the value of the parameters θ that result

in the best function approximation. Each layer in a network acts as a single

mapping function chained together. For example, if functions f (1), f (2), and

f (3) are chained together then f (x) = f (3)( f (2)( f (1)(x))) represents a compos-

ite mapping function. During the training process, the goal is to match then

f (x) to f ∗(x) by successfully reducing the error between the two [96]. The

information flow from the input layer to the output layer is given by Equa-

tion 5.2:

a[l] = g[l](W [l]a[l−1] +b[l]) (5.2)

where index l denotes layers in a network with values from 0,1,2, ...,L. For

l = 0, the a[0] denotes the network input (X) and a[L] denotes the output of final

layer (L) known as network output (ŷ). g[l] is the activation function applied in

a layer l, W is the weight matrix and a[l−1] is input to layer l.
The primary feed-forward networks have evolved into various classes. By

adding a feedback loop, a new class of neural networks has emerged under

recurrent neural networks (RNNs) [97]. The feedback loop allows RNNs to

memorize the previous state of the network exhibiting a sequential or tem-

poral behavior. Thus these networks are best suited for temporal problems

such as times-series prediction, natural language processing (NLP), speech

recognition, etc. Unlike feed-forward networks that process data in parallel,

recurrent networks process data sequentially. However, the vanilla RNNs have

a short memory i.e. they can not keep a record of distant states. In NLP, for
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example, memorizing earlier states is of particular significance where a sen-

tence gives more sense rather than a single word. Long short-term memory

(LSTM) [98] was developed to address this issue. A relatively simple ver-

sion of LSTM is Gated Recurrent Unit (GRU) [99]. Although these models

could memorize long sentences, they often failed to construct meaningful sen-

tences. In encoder-decoder recurrent architectures, an attention mechanism

is used to give context to the data, a mechanism that mimics cognitive atten-

tion. In computer vision, feed-forward networks have evolved into convolu-

tion neural network (CNNs) [100] that has found success in problems related

to images, speech, signal processing, etc. Further models such as Transform-

ers are developed [101] to process sequential data similar to RNNs. However,

unlike attention-based RNNs, Transformers have a self-attention mechanism

and avoid recurrent behavior.

Recent developments in deep learning have allowed the creation of com-

posite models such as Auto Encoders, Variational Auto Encoders, Generative

Adversarial Networks, etc., thus creating a zoo of neural networks1. The ap-

plication of deep learning has expanded to various fields; for example, deep

neural networks are widely used in bio-informatics, medicine, psychology,

natural sciences, etc. Due to emerging computing technologies, more special-

ized models are being developed.

5.3 Geometric Deep Learning

Most of the problems discussed under deep learning (Section 5.2) fall into

the Euclidean domain i.e. the data is structured in the form of a grid such

sequences, images and so on2. However, many problems fall under the non-

Euclidean domain, where data may or may not be structured, such as graphs

and manifolds requiring specialized deep learning algorithms. As a result, a

new sub-field of deep learning has emerged under the name of geometric deep
learning (GDL), a term first coined in Ref. [102].

The non-Euclidean data can be categorized as grids, groups (homogeneous

spaces), sets and graphs, and manifolds (geodesics and gauges) [103]. For

grids, different variants of RNNs and CNNs have been successfully used in

various applications, as discussed in the previous section. For groups, spher-

ical CNNs have been developed for the data from a sphere [104]. For set

structured data, Deep Sets [105] and Set Transformers [106] are a few exam-

ples. For manifolds, standard CNN was used, and more specialized networks

such as Geodesic CNN were successfully applied on the Riemannian mani-

folds [107]. In this thesis, we will focus on the second category i.e. graph-

structured data and neural networks specialized for this data structure.

1See Neural Network Zoo
2Euclidean geometric structures: lines, planes, and other Euclidean spaces.
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A graph G (V,E) is the combination of nodes or vertices (V = v1,v2, ..) and

edges (E = e1,e2, ...). The graphs are either directed or undirected. In directed

graphs, an edge ei j is the connection or link (denoted ’→’) from a source node

vi to a target node v j. In undirected graphs, there is no sense of direction

to establish a link between two nodes, so an edge ek is the link (denote ’−’)

between two unordered pairs (vi,v j) of nodes. The directed and undirected

graphs are shown in Figure 5.4.
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Figure 5.4. Undirected (left) and directed (right) graphs.

A conventional way to process graphs is node representation learning, where

individual nodes are mapped to real-valued vectors, also called embeddings or

representations [108]. However, one may lose topological dependence on the

data, and the final result may depend on how these representations are created.

For example, in many physics experiments, the location of the sensors inside a

detector is of outmost importance as they give position measurements of a par-

ticle trajectory. Very often, these sensors are arranged in the non-Euclidean, or

non-grid-like, geometry. In such cases, the data are better described as graphs,

and specialized neural networks, known as graph neural networks (GNNs),

have been developed that generalize the idea of node embeddings to graph

representation learning. This thesis will focus on graphs and graph neural

networks under GDL.

An early attempt to use a neural network directly on graphs was made

in 1997 [109] leading to the works in Refs. [110, 111] and [112], the later

adopted the name Graph Neural Network (GNN). Several variants of GNN

have been developed so far. The most notable models are the Graph Convo-

lutional Network (GCN) [113], Graph Attention Network (GAT) [115], and

Message-Passing Neural Network (MPNN) [114].

The GCN uses convolutional operation, similar to CNN, on graphs. It up-

dates a node’s features by aggregating the neighboring nodes’ features. The

GAT borrows the idea of attention mechanism from Transformer models; it

applies weights to give importance to certain nodes. The MPNN, on the other

hand, uses a message-passing operation for node embedding.

Another model is the Interaction Graph Neural Network (IGNN), a physics

inspired network that can reason about objects and their interaction in com-

plex data [116]. In a later version, the IGNN was reformulated under MPNN

framework [117]. Schematic of IGNN is shown in Figure 5.5:
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Figure 5.5. Schematic of Interaction Graph Neural Network (Interaction GNN).

The graph module is an IGNN that encapsulates a node and edge network. The

encoder module transforms the input node features into a vector of hidden fea-

tures and creates edge features from neighboring node features. In the graph

module, aggregated neighboring edge features (ēi) are passed to the node net-

work f v giving node output v
′
i, and neighboring node features (v

′
rk
,v

′
sk

, indices

r,s denotes sender and receiver nodes) to the edge network ( f e) giving output

e
′
k. This method is known as message-passing, which exchanges information

between nodes and edges. This message-passing step is repeated several times.

The output of the graph module is then passed through the output module for

binary edge classification by using a certain loss function. As a result, each

edge gets a score or weight. Figure 5.6 shows schematic of the graph module.

Figure 5.6. Graph Module.

Previously in this section, I have attempted to give a concise and selective

historical account of GNNs; however, it is intended for a partial review. The

area of geometric deep learning has ballooned into hundreds of models, and

covering all is beyond the scope of this thesis. The reader is referred to Ref.

[118, 119, 120, 121, 122] for various GNN types and their applications. This

thesis tests GCN, GAT, and IGNN under the MPNN framework.
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5.4 Supervised Deep Learning

In this thesis, I will use supervised learning to train deep neural networks.

In supervised learning, a model is trained on a labeled dataset in the form of

features (inputs) and labels (outputs). Each example in the dataset contains

inputs with their target value, and the learning algorithm maps inputs to the

outputs. The data is presented to the mapping function one example at a time.

By using a particular criterion, an appropriate error function, the algorithm’s

performance is checked, and the state (parameters) of the algorithm is updated

for the next iteration. This process is called training and is repeated until

the desired performance is achieved. A complete supervised training cycle is

shown in Figure 5.7.
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Network

Critic

Train/Validation/Test Datasets

er
ro

r

...

Figure 5.7. Supervised Deep Learning Cycle.

To see how well the algorithm has learned from exposure to the dataset, it

is tested on an unseen dataset to see whether the algorithm has reasonably

mapped the inputs to the targets. The dataset is divided into two subsets i.e.
train dataset (Xtrain) and test dataset (Xtest). Suppose it is desired to see whether

the algorithm is generalizing (see Section 5.4.3) well during the training. In

that case, a small fraction of the training dataset is reserved for validation

(Xval). It is vital to make sure that Xtrain, Xtest and Xval are drawn from the same

batch or distribution of data, especially when data are generated at different

times and settings, as the transient inconsistencies may induce bias in the data.

For large datasets, (∼ 106) examples or more, the dataset is sliced into subsets

containing 90% for training, 5% for validation and 5% for testing is regarded

enough. However, other splitting ratios are equally plausible and may depend

on the size of the dataset and the nature of the problem at hand.
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5.4.1 Network Training

In this section, the training of neural networks is explained mathematically

and highlights the important concepts as the discussion moves forward.

The dimensionality of the network is defined by the architecture (width and

depth), activation functions, learning rate, regularization coefficients in loss,

etc. These parameters are chosen on an ad hoc basis rather than learned, hence

they are referred to as hyperparameters. There is no particular way to choose

the hyperparameters, and it is subject to hyperparameter tuning.

The training process can be well understood in terms of the forward pass,

error calculation and backward pass. We will describe the process for a single

training example; for details on notations and data vectorization, see Appendix

B.2.

5.4.1.1 Forward Pass
In the forward pass, input to the network is propagated through nodes of the

networks. The weighted inputs are aggregated and a bias term is added. Then a

non-linear activation function is applied (see working of a node in Figure 5.2)

to get the output from each layer. The forward propagation equations for each

training example are given as follows:

z[l] =W [l]a[l−1] +b[l]

a[l] = g[l](z[l]) (5.3)

ŷ := a[L]

where l = 0,1,2, ...,L, x = a[l=0] is input vector, a[l=1,2,...,L−1] is output of

hidden layers and a[l=L] denotes output of final layer (ŷ), it is the estimate of

target value y. W is the weight matrix and b is the bias term, both regarded

as network parameters (θ ). The activation function in each layer is defined by

g[l] applied to each layer l. Figure 5.8 shows a few activation functions used

in neural network.

In general, g[l] can be different in each layer. Most commonly, the relu()
activation function is used in hidden layers to speed up the learning process

while the sigmoid() is applied to the output layer. In case of multi-class clas-

sification, the sigmoid() is replaced with the so f tmax() function.

5.4.1.2 Error Calculation
In supervised learning, the criterion used to assess the performance of net-

work is defined by an error or loss function (L ). The most common form of

loss function for regression or binary classification tasks is mean squared-error

(MSE) function:

MSE := L (ŷ,y) =
1

2
(ŷ− y)2 (5.4)
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Figure 5.8. Most common activation functions used in deep learning.

Here L (ŷ,y) ≡ L (θ), and θ = W,b are the network parameters. For binary

classification problems, instead of squared-error function, the binary cross-

entropy (BCE) function is preferred.

BCE ≡ L (ŷ,y) =−ŷ log(y)− (1− ŷ) log(1− y) (5.5)

The Equation 5.5 is a scalar valued and differentiable function which defines

a convex surface with a global minimum.

The cost function (J) is the aggregation of loss over several training exam-

ples. One encounters two different cases when calculating the cost function:

(i) batch cost (Jbatch) over the full training dataset (m), and (ii) mini-batch cost

(Jmini−batch) over a small fraction of training data known as mini-batches (b),

where b � m. The cost functions are shown in the following equation:

Jbatch =
1

m

m

∑
i=1

L (ŷ(i),y(i)) (5.6)

Jmini−batch =
1

b

b

∑
i=1

L (ŷ(i),y(i)) (5.7)

where "(i)" is index of an example in the dataset. The most common cost func-

tion is the mini-batch where batch size is chosen as power of 2 (16,32,64, ...)
to benefit from the 8-bit structure of the memory, however, any number can be

chosen as batch size.

5.4.1.3 Backward Pass
The backward pass is in fact a minimization or optimization stage. First, gra-

dients of the loss function w.r.t the model parameters (θ =W,b) are calculated

65



using the chain rule. The gradients are calculated according to the following

equation:

∇θ L (θ) =

⎡
⎢⎣

∂L (W,b)
∂W

∂L (W,b)
∂b

⎤
⎥⎦ (5.8)

The chain rule essentially calculates the gradients from output layer towards

the input layer. This way of numerical differentiation of the loss function is

called a backpropagation algorithm [97]. The second step is the minimization

of loss by updating the network parameters θ by moving a certain step in the

direction of steepest descent defined by the negative of the gradient ∇θ L (θ).
This procedure is known as method of gradient descent (GD) for optimization

that is explained by the following equations:

θ := θ −α ·∇θ L (θ) (5.9)

where α is the step size known as the learning rate. The choice of learning

rate (α) is crucial to achieve network convergence. There is no particular way

to chose this parameter; one can either chose it on an ad hoc basis or use a

grid-search method to find an optimal value.

In the gradient descent optimization, the gradients of earlier layers are the

multiplication of gradients of later layers. That means the gradients gradually

either vanish or explode during backpropagation, a problem known as vanish-

ing or exploding gradients [123]. In case of vanishing gradients, earlier layers

are hardly updated and optimization never converges to an optimum. On the

other hand, an exploding gradient results in large parameter updates, leading

to the divergence of optimization process. It has been shown that this issue is

linked with activation functions used in a layer. A proper parameter initializa-

tion can diminish this effect [124, 125], see Appendix B.3.1 for details.

5.4.2 Network Optimization

In machine learning, optimization involves steps that lead to minimizing a cost

function. The most common way to perform minimization in machine learning

is through gradient-based optimization. However, non-gradient-based opti-

mization exists, for example, Genetic Algorithm, Simulated Annealing [126],

and Tabu Search [127]. We restrict ourselves to gradient-based optimization

in this thesis.

5.4.2.1 Gradient-based Optimization
In Section 5.4.1, the gradient-base optimization is discussed for training a neu-

ral network. Based on the type of cost function, this method can be categorized
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as stochastic gradient descent (SGD), batch gradient descent (GD) and mini-

batch gradient descent (BGD) if they use L (θ), J(θ)batch, J(θ)mini−batch, re-

spectively. We will refer to these variants collectively as vanilla gradient de-

scent (GD).

During the optimization, one needs to choose a suitable learning rate (α)

so that the network converges to a global minimum. An optimal value of

learning rate can speed up the network convergence. A key challenge when

optimizing a highly non-convex cost function is to avoid getting trapped into

a local minimum. In that case, one needs to find a better way to choose the

learning rate to get out of these minima. As argued in Ref. [128], the primary

challenge is to escape a saddle point of a loss function rather than escaping a

local minimum. To address this problem, new variants have been developed.

One solution is introducing a momentum term in the SGD that drives the

algorithm in the right direction. The Equation 5.9 is modified as follows:

vt = γvt−1 +α∇θ L (θ)
θ = θ − vt

where γvt−1 is the momentum term that drives the parameters θ , vt is the

velocity and γ (mass) parameter is usually chosen as 0.9. γvt−1. The net effect

is that the SGD escapes the saddle points and local minima due to momentum.

A similar yet better algorithm is the Nesterov Accelerated Gradient (NAG)

[129] that has a smart way of utilizing the momentum term mentioned above,

see the following equations:

vt = γvt−1 +α∇θ L (θ − γvt−1)

θ = θ − vt

The difference between vanilla momentum SGD and NAG is the point at

which the gradient is measured. In NAG, rather than calculating the gradi-

ent at the current position before making a jump, it calculates the gradient to

a look-ahead position where the jump will be made. This futuristic update

prevents the optimizer from moving too fast, and instead slows it down while

traversing a valley point.

Apart from the techniques mentioned earlier, there is another class of algo-

rithms that are collectively called adaptive optimization algorithms due to their

ability to adapt to the learning rate during training. Some of these algorithms

are listed below:

• Adaptive Gradient (AdaGrad) [130]

• Adaleta (is an extension of AdaGrad) [131]

• Root Mean Square Propagation (RMSProp) [132]

• Adaptive Moment Estimation (Adam) (AdaGrad + RMSProp) [133]
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• Nadam (Nesterov-accelerated Adaptive Moment Estimation) [134]

• AMSGrad [135]

• AdamW [136]

The study performed in Ref. [136] suggests that the most robust algorithm

among these algorithms is the AdamW. It converges faster and works much

better with the regularization method. The working principle of these algo-

rithms is explained in Ref. [137]. In this thesis, the AdamW algorithm is used

as an optimization algorithm.

5.4.3 Network Generalization

The purpose of machine learning is to learn hidden relationships in the data. To

achieve that, we train a network on a limited dataset and hope it will perform

equally well when new data is provided. The network’s ability to learn the

general understanding of hidden patterns in the data, and correctly predict

when an unseen dataset is used, is called generalization.

During model training, the goal is to optimize the network to reach a global

minimum. However, a small error doesn’t translate into a generalization of the

model. It means that the model is fitted closer to data rather than the under-

lying distribution. This phenomenon is known as overfitting. When new data

are presented to the network, it fails to predict reliably. To identify overfitting,

one needs to compare the training error and generalization error which is the

expectation with respect to the underlying distribution of data. The discrep-

ancy of these errors can be used to quantify the overfitting or generalization.

Most often, the true distribution is not known. If this is the case, then we can

simply estimate it by using a validation dataset during training.

Figure 5.9. The generalization error of a network. The gradual increase in validation

loss indicates overfitting (red box), though the training loss is still decreasing.

This is shown in Figure 5.9, where we see that the training training loss

has substantially decreased, the gap between training and validation loss has
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grown over time. A large gap indicates overfitting and shows that our model

has failed to generalize well after training. One way to mitigate overfitting is

to collect more data; however, this is often not viable as it might be costly or

time-consuming.

There are numerous techniques to combat overfitting, often called regular-

ization methods. Some of these methods are listed below:

• Parameter norm penalties

• Activation normalization (Batch, Layer)

• Dropout and inverted dropout

• Early stopping

• Noise injection

• Data augmentation

Any modification to a model, that reduces its generalization error but not its

training error, can be treated as a regularization method. Most popular among

these are parameter norm penalties (l1 norm and l2 norm), dropout and early

stopping. The l1-norm and l2-norm are used to penalize large weights; these

norms are added to the loss function. The l1−norm regularization is given as

follows:

L (θ)Reg. ≡ L (θ)+
λ
2
‖θ‖2 (5.10)

The l2−norm regularization is also called weight decay is as follows:

L (θ)Reg. ≡ L (θ)+
λ
2
‖θ‖2

2 (5.11)

where, λ is the regularization parameter. The layer index [l] is dropped from

the model parameters, θ , for the sake of simplicity. The l2−norm prevents the

network to take large values of weights. The weight and bias terms are given

as follows: ∥∥∥w[l]
∥∥∥2

2
=

nl

∑
i=1

nn−l

∑
j=1

[
w[l]

i, j

]2
(5.12)

∥∥∥b[l]
∥∥∥2

2
=
[
b[l]

]2
(5.13)

The bias term is usually optional. In case of mini-batch loss, the cost function

with batch size b is given as follows:

JReg.(θ) =−1

b

b

∑
i=1

[
L

(i)
Reg.

]
(5.14)

In the dropout method, a fraction of neurons in each training cycle is muted.

The choice is based on the dropout probability (p) calculated during each cy-

cle. Typical values are 0.2 < p < 0.5. The dropout forces the network to
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redundant representations and adds noise to the process of feature-extraction.

Dropout is only applied during training and switched off during validation.

As a result, a large ensemble of sub-models is used during validation, thus

improving network generalization. In case of early stopping, one monitors

the validation loss and stops the training when the generalization error starts

getting too large. Early stopping is sometimes discouraged for regularization

as it violates the concept of orthogonalization. This means that it affects not

only the validation process but also the training process. Orthogonalization is

a way to independently adjust one parameter at a time. Due to orthogonal-

ization, tools has been developed to avoid the bias-variance trade-off during

network training.

5.4.4 Speeding up Network Training

In order to speed up the network convergence to an optimal state, several tech-

niques are available. For example, choice of initialization of model parame-

ters, and normalization of input and hidden features in a network. Some of

these techniques are briefly discussed in Appendix B.3.

5.4.5 Hyperparameter Tuning

Hyperparameter tuning involves finding optimal values of hyperparameters.

Hyperparameters differ from the model parameters (W,b) as they can not be

estimated during model training but need to be carefully chosen. Hyperpa-

rameter tuning include finding optimal network architecture (nodes and lay-

ers), activation functions, optimization algorithms, regularization methods,

etc. Finding optimal hyperparameters can be a tedious and time-consuming

task. However, there are a few ways to choose them by, for example, per-

forming a manual search, a grid search, a random sampling and a Bayesian

search.

In manual search, one can use intuition or experience to choose hyperpa-

rameters. In grid search, one chooses a few hyperparameters to figure out what

suits best, while in random sampling, hyperparameters are arbitrarily selected

from prior distributions.

5.4.6 Network Evaluation

Several metrics are available to evaluate the performance of a binary classifier,

for example Classification Accuracy, F1-score, Mean-Squared-Error (MSE),

Receiver Operating Characteristic (ROC) curve, Area Under the ROC Curve

(AUC). The choice of these metrics depends on the problem at hand. In my

case, I chose AUC to evaluate my models. First, I look into the confusion

matrix for a binary classifier that is shown in Figure 5.10:
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Figure 5.10. A confusion matrix for a binary classification model.

where true positive (negative) means that the classifier predicted positive (neg-

ative), which is also truth (true). False positive (negative) means that the clas-

sifier predicted positive (negative), while it is false (false) in reality. The FP

and FN are also known as type-I and type-II errors. The quantities from the

confusion matrix can be used to calculate a variety of performance metrics e.g.
true positive rate (TPR) and false positive rate (FPR) given as follows:

TPR =
TP

TP+FN

FPR =
FP

FP+TN
(5.15)

TPR is called Sensitivity or Recall, and FPR is known as Positive Predicted

Value or Fall-out rate. The ROC curve plots TPR v.s. the FPR at varying

classification thresholds. The value of AUC ranges from 0 to 1 and gives an

aggregate performance of the classifier at various thresholds (i.e. score cuts in

our case). A high AUC value means high performance and vice versa. AUC

has an advantage over other metrics that it is scale-invariant and threshold-

invariant.

Here we used slightly modified parameters to calculate the ROC curve by

using the edge classification efficiency (εE) and edge classification purity (pE)

defined as follows:

εE := TPR

pE := TNR = 1−FPR (5.16)

5.5 Applications in HEP

Machine learning has been used for tackling various problems in the high en-

ergy physics (HEP) community. Most importantly, neural networks have been
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used for approximating complex functions (e.g. mass reconstruction), pattern

recognition, signal to background suppression, triggers, jet/particle identifi-

cation especially b-quark tagging, etc. More advance uses include anomaly

detection, denoising of data, detector simulations, and so on. A comprehen-

sive list of uses can be found in Ref. [138]. A list of reviews outlining the

applications of neural networks in various domains of physics can be found in

Ref. [139], especially in pattern recognition in [140, 141]. In this thesis, how-

ever, we will focus on the machine learning application to pattern recognition.

The topic is covered broadly in Chapter 7, Chapter 8 and Chapter 9.

5.5.1 Pattern Recognition using Neural Networks

The application of ANNs as pattern recognition started in the early 1980s. One

of the earliest applications of the Hopfield Network [142] for track finding was

done by Denby [143], and Peterson [144], who independently worked out the

procedure. Their adaptation of the Hopfield Network is nowadays known as

the Denby-Peterson Network [145]. The idea was simple: every connection

between two hits was attached to a Hopfield neuron that is activated if the hits

forming the connection belong to the same track and deactivated otherwise.

The interaction of neurons among themselves, i.e. the state of the network,

was characterized by an energy function whose global minimum only activates

the valid connections.

This network found its first realistic application in the ALEPH experiment

[146], where the performance was found to be similar to that of classical track

finders. Moreover, simple variants of the Hopfield networks were applied in

the ARES spectrometer [147] and the ALICE experiment [148, 149]. During

these applications, especially in the ARES experiment, it was found that the

Denby-Peterson Networks have a limitation e.g. they do not scale with the

density of tracks, and failed to separate tracks that are too close to each other.

So new variants were searched and developed for track finding. Most notable

are elastic arms, and deformable templates [150, 151].

The MLPs have found their application in high energy physics community

during the same time period as the Hopfield Networks. Their use in track

finding, however, was almost non-existent until recently. We will see later in

Section 5.6 that how the feed-forward networks can be re-imagined for pattern

recognition.

5.6 Novel Deep Learning Methods for PANDA
In Section 4.3, almost all of the reconstruction algorithms are based on the

classical techniques except for SttCellTrackFinder, which uses cellular au-

tomaton for track reconstruction. Classical algorithms have some disadvan-

tages; for example, many depend on the origin of tracks (i.e. primary track
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finders) and are combinatorial, thus making them relatively slow. To circum-

vent some of their issues and, in some instances, provide a complementary so-

lution, machine learning algorithms, especially neural networks, are explored

in this thesis. In this regard, I discussed briefly how neural networks have been

used as pattern recognition in the past in Section 5.5.1.

One can re-imagine neural networks to classify the hit connection forming

a track, similar to the way Hopfield Networks were used. However, instead

of being a standalone solution, a probability of the hit connection can be ob-

tained and used to build tracks. I will refer to hit connections as edges, and

their classification as Edge Classification. For edge classification, special data

will be prepared where each track is broken down into nodes and edges. The

edges are either created randomly or by using a heuristic method where valid

edges, i.e. edges belongs to a specific track, are assigned a probability of one.

Otherwise, it will be assigned as zero. The naive approach is to use an MPLs

as edge classifiers (Chapter 7). A rather sophisticated approach (Chapter 8,

Chapter 9) is to use message-passing graph neural networks to classify edges

that leverage additional information from the neighboring edges.

5.6.1 Related Work

Pattern recognition with neural networks has gained momentum in the re-

cent years after the TrackML challenge [152]. The HEP.TrkX project [153]

explored various deep learning models for track reconstruction e.g. RNNs

and CNN on a toy dataset representing a planar detector geometry [154].

The Exa.TrkX project [155], the successor to the HEP.TrkX, used RNNs and

GNNs in the space-point representation of HEP tracking data. In RNN, track

seeds from true tracks are extrapolated using the LSTM. This model has two

variants: (i) the Sequential hit predictor regression model, that achieved an

efficiency of 99.93%, (ii) the Sequential hit predictor Gaussian model, that

achieved an efficiency of 99.98%. With GNNs, Graph hit and segment clas-

sification were performed [156]—a rather serious application by Exa.TrkX

used track-seed labeling with Embedded-space Graph Neural Networks [157].

Applying GNN for particle track and shower reconstruction problems [158],

the same method is used for a full detector [159]. Other applications of the

GNN can be found in Ref. [160, 161, 162, 163]. For PANDA, I have used

GNN models for edge classification for track reconstruction in the Straw Tube

Tracker, and presented preliminary results in Ref. [164]. The work presented

in this thesis is a another step forward in using different models of graph neural

networks for track reconstruction.
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Part II:
Realistic Track Reconstruction in the PANDA
Target Spectrometer using Deep Learning
Techniques





6. Strategies of Deep Learning in PANDA
Tracking

6.1 Problem Formulation

The goal in this part of the thesis is to develop track-building techniques based

on deep learning (see Section 5.6) in the Central Tracking System (CTS) of

the Target Spectrometer, where a crucial component is the STT (see Section

3.4.1.4). The track reconstruction method should have the following features:

• Be able to handle the non-Euclidean geometry of the STT

• Be agnostic of the origin of the tracks, i.e. be able to handle tracks

from displaced vertices

• Have the capability to reconstruct particles with low momenta with

reasonable efficiency

In addition, we need a framework that can be extended to other detectors, such

as MVD and GEM. However, combining these detectors is a rather challeng-

ing task as these detectors comprise different geometries and detection tech-

nologies. In the past, an attempt has been made to combine STT with MVD

and GEM for traditional algorithms, but it has yet to reach the operational

mode [18].

In this work, I have focused on the straight sections of the STT and ignored

the skewed ones. This means that we effectively consider the 2D rφ -projection

of the STT. The reason is that in the STT, the z−component is given as the

center-of-tube parallel to the beam axis, as the position of the signal can be

anywhere along the wire. To correctly find out the z-component, STT uses

planes of skewed layers titled ±3◦ to the beam axis that requires an inde-

pendent hit correction procedure for these layers. In general, PANDA’s track

reconstruction is performed in 2D and later extended to 3D by exploiting the

skewed layers [10].

In addition, we will consider two different representations of the STT i.e.
Euclidean (Chapter 7), or grid-like, geometry, and non-Euclidean (Chapter 8,

Chapter 9), non-grid-like, which is a reference to non-Euclidean detector ge-

ometries. In the former case, standard deep learning models are better suited

e.g. DNNs, RNNs, and CNNs that can process an entire event at a time. In

the latter case, geometric deep learning models are suitable e.g. GNNs. A

whole STT event is treated as a graph combining nodes and edges in both

cases. Both kinds of models are used to perform edge classification on each
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graph. In the Euclidean case, a DNN is used for edge classification. Due to the

variable size of a graph, a DNN can not process a full graph at a time, just like

an RNN or CNN can do. In reality, edge classification is performed for each

edge independently. Hence the notion of being Euclidean regarding DNNs is

not strictly true. However, I will keep this notion for the sake of comparison.

In non-Euclidean cases, GNNs can process a full graph regardless of size, a

distinct feature of GNNs.

Apart from the detector geometry, the main challenge comes from the data

we simulate. We are interested in the low-to-medium momentum, i.e. 50

MeV/c up to a few GeV/c, where the peculiar and non-perturbative features

of strong interaction manifest. For example, hyperons often decay into pions

with very small momentum (i.e. < 100 MeV) that are difficult to reconstruct

since they may leave a curling pattern in the STT [18, 86].

In Section 4.4, I have summarized the challenges we face regarding track

reconstruction in PANDA. To develop a prototype to address these challenges,

I will simulate muons within the momentum range of 100 MeV to 1.5 GeV and

reconstruct using the Euclidean (Chapter 7) and non-Euclidean (Chapter 8)

representations. In Chapter 9, I will simulate Λ hyperons from the p̄p →
Λ̄Λ → p̄π+pπ− reaction to investigate the capability of my non-Euclidean

algorithm to reconstruct both tracks from displaced vertices and particles with

low momenta.

6.2 Deep Learning Pipeline

In this section, I will introduce the concept of a deep learning pipeline, I have

adapted the Exa.TrkX pipeline [155] for the PANDA experiment, especially

the STT. The pipeline consists of four stages: (i) Data Generation, (ii) Edge

Construction, (iii) Edge Classification, and (iv) Track Formation. These stages

are shown in Figure 6.1.

Preprocessing Training Postprocessing

Detector
Simulation

Data Generation

Heuristic
Method

Edge Construction

Neural
Network

Edge Classification

Connected
Components

Track Formation

Figure 6.1. The Deep Learning Pipeline.

The pipeline runs sequentially where each stage takes input from the previous

stage. The pipeline is deployed as a single instance, for example on a GPU
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cluster. To remain consistent in our handling of different representations of

STT, I will from now on use terms from graph theory such as nodes for hit

positions and edges for a link between two hits positions and use these terms

for both graph based and non-graph based data. The stages of the pipeline are

briefly discussed in the following sections.

6.2.1 Data Generation

The input data are produced in simulations using the PandaRoot[54]. The

information is then stored into Comma-Separated Values (CSV) files that are

later read inside a Python environment.

The signal left by a particle track inside a detector may have many distinct

features, such as position, momentum, deposited charge, particle type and di-

rection. These features can be used to define a hit in the detector. Further,

the position of hits are transformed into cylindrical coordinates, (r,φ ,z), new

quantities are derived e.g. transverse momentum (pt). Finally, the hit positions

are filtered to add or remove the skewed layers in the STT. Each hit is assigned

a feature vector and a corresponding particle number.

6.2.2 Edge Construction

An edge is a link between any two nodes. Edges are either created randomly

or by some heuristic method. In our case, the heuristic method creates layer-

wise edges, i.e. in adjacent layers, starting from the innermost layer to the

outermost layer of the STT. In addition, edge construction is restricted to adja-

cent sectors of the STT. Each edge is labeled as either true or false depending

upon whether an edge is part of a track or not. If the data contain noise, then

all edges resulting from noise are marked as false. A complete hit graph, i.e.
event as a hit graph, is created from the particle trajectories comprising of

nodes and edges. The input features from both hits are concatenated together

with a label which is then used for edge classification.

6.2.3 Edge Classification

In this stage, an edge classification is performed using either deep learning

(Euclidean) or geometric deep learning (non-Euclidean) models. This stage

has two different modes. In the first mode, a standard deep learning model,

such as a DNN, is trained on the edges in a hit graph one by one. Due to

the variable size of a hit graph, a DNN cannot process hit graphs as a whole

hence it may lose the topological features of the data. In the second mode, a

geometric deep learning model, such as a GNN, is used to classify edges in a

hit graph. The GNN process the whole hit graph, i.e. event, as a whole, hence

they are better at capturing the topological features of data.
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After the training, model prediction is performed on the test dataset. As a

result, a neural network assigns a probability, or score, to each edge. The edge

scores are used to cluster nodes into tracks.

6.2.4 Track Formation

The track formation can be carried out using the connected-component label-
ing (CCL) algorithm from the graph theory [166, 167]. In computer vision,

CCL is widely used to label connected-components in binary images. In High

Energy Physics, it is often used to label tracks in the detectors [168]. To use

this method, first edges are filtered out by applying a certain cut on the edge

score. Then an n× n sparse or adjacency matrix in coordinate (COO) for-

mat, also known as the i jv or triplet format, is created, where n is equal to the

number of nodes per event with matrix data taken as the edge score between

nodes1. Finally, a depth-first-search (DFS) method scan through the adjacency

matrix grouping nodes into components and assign a label to each component.

In case of hit graphs, these components are known as track candidates.

Another method, equivalent to CCL, is to use density-based spatial cluster-

ing of applications with noise (DBSCAN) algorithm [91] on a predicted hit

graph. The DBSCAN uses a maximum sample distance parameter εdb that is

the maximum distance between two samples to form a neighborhood e.g. we

can chose a particular value of εdb to mark whether two nodes are close enough

to form an edge. For DBSCAN, an adjacency matrix similar to the above, is

created. Here, the edge scores are converted into an inverse distance between

two nodes. The DBSCAN then clusters nodes into different components based

on the value of εdb and assign a label to each cluster. These clusters are taken

as track candidates.

Both CCL and DBSCAN methods are equivalent in operation as the DB-

SCAN method ultimately calls a connected-component algorithm such as DFS,

which is similar to CCL. A higher value of edge score cut in the CCL method

is equivalent to a lower value of εdb in the DBSCAN. In this thesis, we will

use DBSCAN method for track formation. Both of these method produce

connected-components for directed graphs and weekly-connected-components
for bidirectional graphs.

6.3 Strategy

In the following chapters, I will use the above pipeline for both Euclidean

and non-Euclidean representations of the STT. In the first case, a DNN is

used for edge classification for muons. In the second case, GNN will be

used for edge classification for muons as well as the final state particles of the

1One can use either NetworkX [169] or PyG [170] libraries for this purpose.

80



p̄p → Λ̄Λ → p̄π+pπ− reaction. In this reaction, the tracks from the final state

particles start in the Λ and Λ̄ decay vertices, which are typically located several

centimeters away from the beam-target interaction point. Hence, studying this

reaction will provide a test on how well machine learning algorithms performs

in the tracking of particles originating from displaced vertices. The pipeline

for different cases will run on the Cori cluster of the National Energy Research

Scientific Computing Center (NERSC), a U.S. Department of Energy Office

of Science User Facility located at Lawrence Berkeley National Laboratory2.

The work has been started and is ongoing to extend the STT to include

other tracking detectors e.g. GEM and MVD detectors. This requires a het-

erogeneous deep learning setup. Not only the output data from these detectors

is heterogeneous, but also the underlying detection technologies are signifi-

cantly different. As a result, this is a challenging task that is not yet completed.

However, the status of the work will be presented in Chapter 14.

2operated under Contract No. DE-AC02-05CH11231 using NERSC award ERCAP-0021226.
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7. Application of Deep Learning in the Straw
Tube Tracker (STT)

In this chapter, we will use a deep learning pipeline for the Euclidean rep-

resentation of the STT. For simplicity, the skewed layers of STT have been

removed and therefore, the tracks are reconstructed only in the rφ−projection

of the detector.

7.1 Deep Learning Pipeline

The deep learning pipeline designed for the Euclidean domain of our data fol-

lows the logic of Figure 6.1. In the following sections, each stage is discussed

in more detail.

7.1.1 Data Generation

Five μ+μ− pairs per event in the momentum range of 100 MeV/c to 1.5 GeV/c

are generated using the particle gun within the geometric acceptance of STT

i.e. 22◦ < θ < 140◦. The choice of these relatively low momenta is motivated

by the fact that the existing algorithms have difficulties reconstructing low pt
particle trajectories, as these trajectories are spiraling, strongly curved, and

overlapping [18, 171].

Although muons may produce secondary particles when interacting with

the detector material, these interactions have not been considered in the simu-

lations. The muons originate at the beam-target, or p̄p, interaction point (IP).

Before reaching the STT, muons traverse the MVD detector. The GEM detec-

tor, on the other hand, falls outside the geometric acceptance of STT; hence no

primary muon passes through it. In total, 100,000 events are simulated using

PandaRoot, resulting in about a million tracks.

The number of hits per event in the STT detector is shown in Figure 7.1.

Tracks with relatively high transverse momentum (pt) may traverse the full

STT, leaving 26 hits per track. The peak around ∼ 250 hits indicates that in

a large fraction of events, all ten muons have large pt . The region below this

peak contains a small fraction of tracks that have not reached the STT or es-

caped the STT through the gap between the two halves of the STT detector.

The events above the peak, on the other hand, are the ones that have extremely

low pt tracks (pt < 100 MeV). These particles move in spiraling or curling
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trajectories, thus leaving more hits per event. On average, there are approxi-

mately 234 hits per event. It is also apparent from the hit distribution that the

maximum number of hits in an event do not go beyond 400 hits.

Figure 7.1. Histogram of the number of hits per event in STT. About 23 million hits

are present in the dataset. The average number of hits per event are ∼ 234.

7.1.2 Edge Construction

A heuristic method is used to build edges in the STT. The method creates edges

in adjacent layers, from the innermost layer to the outermost layer. Moreover,

edge construction is restricted to adjacent sectors of STT (see Figure 3.7).

We will refer to this heuristic as the layerwise edge construction. The edges

include both true and false edges, where true edges are those that belong to the

same track, and false edges are those formed from hits from different tracks.

The constraint on edge construction in the adjacent sectors is based on the

assumption that it is improbable that a track traverses more than three sectors

(half of the STT detector), even in the case of curly tracks. This observation is

based on visually inspecting five hundred events with extremely low pt tracks.

In addition, this constraint also reduces class imbalance in the dataset to some

extent, i.e., between true and false edges. In our case, false edges are a factor

of four more frequent than true ones. This is an unavoidable imbalance in our

data. In classification tasks, the imbalanced data will force the neural network

to spend more time on one class than the other, which may spoil the network’s

performance.

Figure 7.2 shows the total number of constructed edges as well as true and

false edges. Out of the 7.8 ·107 total edges, the true and false edge fractions are

calculated to be ∼ 20% and ∼ 80%, respectively. To create a labeled dataset
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Figure 7.2. The histogram shows true (orange), false (green) and total (blue) edges

constructed from the dataset.

for an edge classification task, the features of two nodes forming an edge are

combined, and a label is assigned as ’1’ for true edges and ’0’ for false edges.

The node features are taken as r and φ positions in the polar coordinates.

In addition, the isochrone radius (ρ) of a hit (see Section 3.4.1.4 regarding

isochrones) is also added to the node features. As a result, the input to the

neural network consists of six features from two hits (hi,h j) and a label.

ith Node Features jth Node Features Label

hi = [ri, φi,ρi] h j = [r j, φ j,ρ j] yi j =

{
1 if True Edge

0 otherwise

The events are randomly split into three subsets for supervised learning with

90% events for training, 5% for validation, and 5% for testing. It is important

to note that the split is made on the event level rather than the edge level to

ensure that edges do not appear in multiple subsets.

7.1.3 Edge Classification

A six-layer DNN model with one input layer, five hidden layers, and one out-

put layer is used for edge classification. By convention, the input layer is not

counted. Hyperparameter tuning is performed using Ray Tune [172], where

only the number of hidden nodes, hidden activation functions, and batch size

is tuned. An example network is shown in Figure 7.3.
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Weighted
Connections

Output layer

Input layer Multiple hidden layers

Figure 7.3. A dense neural network for edge classification.

After hyperparameter tuning, I found the following hyperparameters for our

model (see Section 5.4 for explanation of these hyperparameters):

• Hidden layers: 5

• Layer architecture: [128, 128, 1024, 1024, 128, 1]

• Activation functions: [hidden: relu(), output: sigmoid()]

• Batch size: 128

In order to train the network, following additional hyperparameters are chosen:

• Binary Cross-Entropy (BCE) loss

• AdamW Optimizer:

– α = 0.001,β1 = 0.9,β2 = 0.999,

– amsgrad=True, weight_decay=0.01

• Learning rate: α = 0.001

• Activation Normalization: Layer Norm

• Data split: [90%,5%,5%]

The network is trained for 50 epochs as the generalization gap between the

training and the validation errors do not change significantly. However, one

can train longer to investigate whether the network’s performance changes

drastically. Each training epoch represents a full training cycle, i.e. when the

network passes through the training and validation dataset once. The network

output for both true and false edges is shown in Figure 7.4.

I use Area Under the ROC (AUC) for model evaluation as defined in Section

5.4.6. Figure 7.5 shows the ROC curve for the current model. The AUC

equals 0.9875 (left panel), indicating reasonably high model performance. The
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Figure 7.4. Model outputs on test dataset for true and fake edges.

efficiency and purity for various cuts on the classification score are shown in

the right panel of the figure.

Figure 7.5. Model evaluation: (left) ROC with AUC ∼ 0.9879, (right) edge efficiency

(εE ) and edge purity (pE ) as a function of edge score cut.

It is clear that by increasing the cut on the edge classification score, the edge

purity increases. However, at the same time, the edge efficiency of the classi-

fier gradually decreases. Hence, there is a trade-off between choosing a par-

ticular edge efficiency and purity value. In this scenario, one needs to choose

an optimal value of the cut. For example, the edge score cut of s = 0.5 gives

εE = 0.96 and pE = 0.97.

The signal efficiency (εsig) is defined as the true positive rate, or recall,
whereas the misidentification rate (εbkg) is defined as the false positive rate
from the ROC. The background rejection rate is defined as one over misiden-
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tification rat (1/εbkg). The background rejection rate vs the signal efficiency

for various edge scores is shown in Figure 7.6.

Figure 7.6. Signal to Background rejection rate of DNN for various edge score cuts.

In Figure 7.6, the black dot corresponds to the edge score cut of s = 0.5.

Table 7.1 shows the signal efficiency, misidentification rate, and background

rejection rate for edge score cuts of 0.5 and 0.7.

Table 7.1. Signal efficiency, misidentification rate and background rejection rate for
an edge score cut of 0.5 and 0.7.

Edge score Signal efficiency Misidentification rate Background rejection rate

0.5 0.955 0.029 34.8
0.7 0.935 0.023 43.4

Increasing the cut value will decrease signal efficiency and misidentification

rate while increasing the background rejection rate.

7.1.4 Track Formation

For track formation, the DBSCAN method is used to find tracks. To choose an

optimal value of DBSCAN distance parameter, εdb, the tracking efficiencies,

track purity and clone rate are calculated for different values of εdb. As men-

tioned in Section 6.2.4, smaller values of εdb corresponds to a higher cut on

the edge score. Figure 7.7 shows tracking efficiencies, purity and clone rate as

a function of εdb.

Among the three values, marked with vertical lines, the value of εdb is cho-

sen to be 0.2 as an optimal value for the DBSCAN. εdb = 0.25 is also a bet-

ter choice but with slightly less tracking purity. In total, 2 · 103 events are

87



Figure 7.7. The tracking efficiencies, track purity and clone rate as function of εdb.

used for track formation that took approximately 6 minutes and 31.4 seconds

(real time) using single worker whereas it took 32.1 second (real time) using

8 worker to process all events on a Intel Core i7 CPU with 16 GB of RAM.

7.2 Track Evaluation

The track evaluation is performed according to the method described in Sec-

tion 4.2. The evaluation criteria is taken as follows:

- Minimum True Hits (Nt): ≥ 7 STT hits for Reconstructable Particles

- Minimum Reco. Hits (Nr): ≥ 5 STT hits for Reconstructed Tracks

- Matching Fractions (MF): > 50%

The tracking efficiencies, ghost rate and clone rate are given in Table 7.2:

Table 7.2. Tracking efficiencies, ghost rate (GR), clone rate (CR) for Nt ≥ 7, Nr ≥ 5

and MF > 50%.

Nt Nr MF [%] εphys. [%] εtech. [%] GR [%] CR [%]

7 5 > 50 76.3±0.272 77.2±0.278 3.64±0.329 17.2±0.107

For a more fine-grained understanding of the performance, the efficiencies are

calculated as a function of the transverse momentum (pt), the lab polar angle

of the track (θ ), and the azimuthal angle of the track (φ ). These variables are

defined in Equation 7.1:

pt =
√

p2
x + p2

y , θ = tan−1(pt , pz), φ = tan−1(py, px) (7.1)
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Figure 7.8 shows results as as function of pt using the aforementioned eval-

uation criteria. On the left panel, the number of selected, reconstructable,

and matched particles are shown; on the right panel, tracking efficiencies

are shown for various pt . A large fraction of particles is generated with

pt < 0.5 GeV/c. This is the region where one expects crossing and spiraling

tracks due to low momentum. Hence the tracking efficiencies are too small in

this region. Recall that, to fully traverse the STT, a particle needs a minimum

pt > 0.25 GeV/c (see Eq. 3.5). However, for particles with pt > 0.5 GeV/c,

the tracking efficiencies are large and almost flat for the rest of the pt region.

Figure 7.8. Number of selected, reconstructable, and matched particles (left), and

tracking efficiencies (right) as function of pt .

The tracking efficiencies as a function of θ are shown in Figure 7.9. The left

panel shows the number of selected, reconstructable, and matched particles.

On the right, tracking efficiencies are plotted as function of θ within the STT

acceptance. There is no significant angular dependence on tracking efficien-

cies over the whole range. The slight but smooth reduction in efficiencies at

the edges of STT is due to particles generated close to the boundaries of STT

acceptance. As a result, a fraction of particles leaves the STT in the longitudi-

nal direction leaving fewer hits in the transversal direction.

Figure 7.9. Number of selected, reconstructable, and matched particles (left), and

tracking efficiencies (right) as function of θ .
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I also investigated dependence of the tracking efficiencies on the azimuthal an-

gle, φ , corresponding to different sectors of the STT. The number of selected,

reconstructable, and matched particles (left) as well as the tracking efficien-

cies (right) are shown in Figure 7.10. The efficiencies are almost consistent

throughout the whole φ range spanning from −180◦ to 180◦ with small dips

at ±90◦. These correspond to the vertical gap between the two halves of STT,

where cluster-jet target and target-beam dump are located. It is reassuring that

our classifier is not biased towards a certain φ−region and can reconstruct

particles with equal accuracy in the whole detector.

Figure 7.10. Number of generated, reconstructable and matched tracks (left) and

tracking efficiencies (right) as function of φ .

In order to see whether our classifier is biased towards a certain charge, the

tracking efficiencies as function of pt are calculated for μ+ and μ− separately.

The tracking efficiencies as function of pt for both cases are shown in Fig-

ure 7.11.

(a) Positive Charge (b) Negatitive Charge

Figure 7.11. Tracking efficiencies for positive (right) and negative (left) muons as

function of pt .

It appears that our classifier is not biased towards a particular charge. To show

this effect, the difference of overall efficiency (εphys.) from both positive and

negative particles is plotted as function of pt as shown in Figure 7.12. It is
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clear that the difference of efficiencies for both positive and negative charge

is close to zero within the error bars, hence it is safe to conclude that there no

bias towards a particular charge.

Figure 7.12. The difference of overall efficiencies of positive and negative charge as

function of pt .

7.3 Summary of Results

The tracking efficiencies, ghost rates, and clone rates are calculated for various

MF greater than 50%,75% and 95%, and two different values of Nr taken as 5

and 6 for reconstructed tracks. The results are summarized in Table 7.3.

Table 7.3. Tracking efficiencies, ghost rate (GR), clone rate (CR) for loose, moderate
and strict matching criteria with at least 5 as well as 6 hits for reconstructed tracks.

Nt Nr MF [%] εphys. [%] εtech. [%] GR [%] CR [%]

7 5 > 50 76.3±0.272 77.2±0.278 3.64±0.329 17.2±0.107

7 5 75 58.2±0.225 58.6±0.230 12.0±0.307 27.4±0.141

7 5 95 53.5±0.213 53.8±0.216 14.8±0.300 29.7±0.148

7 6 > 50 75.5±0.270 76.8±0.278 3.78±0.337 13.9±0.098

7 6 75 57.7±0.224 58.6±0.230 12.6±0.314 24.5±0.135

7 6 95 53.0±0.211 53.8±0.216 15.2±0.307 27.1±0.144

In the case of Nr = 5, increasing the matching criteria from 50% to 75% the

εphys. result in a ∼ 24% drop in its values whereas the ghost rate is increased

by a factor of 3.3. The clone rate increases by a factor of 1.6. For Nr = 6, these
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variables drop within the same scale as for Nr = 5 i.e. εphys. drops by 24%, the

ghost rate increases by a factor of 3.3 and the clone rate increases by a factor

of 1.8.

By using a standard deep learning model such as DNN for an edge clas-

sification task, we achieve tracking efficiencies of up to 80% specific to the

network model and training parameters I have chosen. The low efficiencies

can be attributed to various factors. A large class imbalance in the data is one

major cause, as the network might need to learn better to distinguish between

two classes. The class imbalance is not handled for the sake of comparison

with Graph Neural Networks. A second major factor might be the low pt
tracks that may curl to intersect other trajectories. This factor is a major draw-

back in the DBSCAN and CCL methods used to form tracks. These methods

are designed to find connected components in a predicted graph that breaks

intersecting trajectories into several sub-tracks resulting in a large clone rate.

To mitigate large clone rates, one might need a different algorithm to ac-

count for shared hits from intersecting tracks. For example, a pathfinding or

a walkthrough algorithm can be used that can account for shared hits. In ad-

dition, the walkthrough algorithm can also be integrated with DBSCAN or

CCL. The idea is to run the walkthrough algorithm on each component pro-

duced by either DBSCAN or CCL algorithms. If successful, one may recover

a small fraction of tracks treated as clones. Development and integration of

this method have yet to reach the production level. Hence it has not been

tested.
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8. Application of Geometric Deep Learning in
the Straw Tube Tracker (STT)

In the previous chapter, track reconstruction is performed for the Euclidean

representation of the STT. Many real-world systems produce data that falls

into the non-Euclidean domain, such as sets, graphs, and manifolds. The STT

detector is a non-Euclidean geometry, where straw tubes are arranged into six

sector in the form of a hexagon. This chapter explores geometric deep learning

models for track reconstruction in the STT [164].

8.1 Geometric Deep Learning Pipeline

The Geometric Deep Learning (GDL) pipeline is slightly different from the

deep learning pipeline as shown in Figure 6.1. The data generation and track
formation stages are similar to the stages in Chapter 7. However, the stages of

the edge construction and edge classification are somewhat different. In GDL,

the events are treated as bidirectional graphs, and specialized graph neural net-

works are used for edge classification. The stages of the pipeline are discussed

in the following sections.

8.1.1 Data Generation

The dataset used in geometrical deep learning is the same as in Section 7.1.1

i.e. five μ+μ− pairs per event are generated in the momentum range of 100

MeV/c to 1.5 GeV/c. In total, 105 events are generated. The track reconstruc-

tion is performed in the rφ−projection of STT, and skewed layers have been

removed from the data. Choosing the same conditions allows for comparing

both methodologies used for track reconstruction.

8.1.2 Edge Construction

The raw input data, represented as a point cloud, is converted into bidirec-
tional graphs. The edges are directed from one node to another in forward

and backward directions. The edges of the same particle are labeled as true

edges, while those formed by nodes from different particles are marked as

false edges. For this purpose, I used a heuristic method similar to the one used

in Section 7.1.2 that captures all true edges while keeping the number of fake
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edges low. In this method, edges are formed in successive steps starting from

the innermost layer toward the outermost layer in the radial direction. The

edge formation is limited to adjacent or neighboring layers. In addition, edge

construction is contained to adjacent sectors. If a particle produces two hits on

the same layer, then both hits are included in the graph. If a hit is missing in a

layer, then the graph is constructed using the next adjacent layer.

Figure 8.1 shows a constructed graph of an event. To the left in the figure,

the true graph, i.e. the ground truth of an event, is shown. To the right, one

can see an input graph with all possible combinations of edges. Here, only the

first three layers are visualized.

Figure 8.1. Graph representation of an event: (left) True Graph, (right) Input Graph.

The graphs are represented in the form of an adjacency list, I ∈ N
2×nedges , in

coordinate (COO) format where nedges is the total number of edges per event.

The node features are stacked in a matrix X = [xi] ∈ R
nnodes×3 and their labels

in column vector y∈R
nedges . Our hit graph now looks like GCOO := (X , I). This

format is chosen to efficiently process graphs that have less time complexity

and take less computer memory compared to the adjacency matrix format.

8.1.3 Edge Classification

Three different kinds of graph neural networks under message-passing frame-

work [114] are tested for edge classification: (i) Graph Convolutional Net-

work (GCN) [113], (ii) Graph Attention Network (GAT) [115], (iii) Interac-

tion Graph Neural Network (IGNN) [116]. These models further consist of

residual connections [173] to speedup training. The network architecture, i.e.
nodes, and layers of these networks are the same as used in Ref. [165] that

are tuned for a track reconstruction task on the TrackML dataset [152]. In this

thesis, these models are only tuned for various message-passing aggregation

functions such as , , , , etc.
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The networks are trained for 20 epochs using 10000 events with data split

of 80%, 10%, and 10% of total events for training, validation, and testing. By

inspecting the validation loss, it is found that both GAT and IGNN are very

close in performance compared to the GCN. IGNN is chosen to perform edge

classification. Figure 8.2 shows validation loss for all three networks.

Figure 8.2. Validation loss for IGNN, GAT and GCN with SUM_MAX aggregation.

The IGNN consists of three modules: (i) encoder module, (ii) graph module,

and (iii) output or decoder module. The encoder module consists of an edge

network and a node network, and its task is to encode input node features

to a vector of hidden features and to create edge features from neighboring

nodes. In the graph module, aggregated neighboring edge features are passed

to the node network, and the neighboring node features are passed to the edge

network. This is a message-passing step where information is exchanged be-

tween nodes and edges. This step is repeated eight times. The final output is

then passed to the output module that performs binary classification using the

binary-cross-entropy loss function. As a result, each edge is assigned an edge

score. A schematic diagram of IGNN used in this work is shown in Figure 8.3.

For network training on full dataset, i.e. 105 events, the following hyperpa-

rameters are used (see Section 5.4 for an explanation of hyperparameters):

Hyperpameters for GNNs
• Message-passing: sum_max()

• Binary Cross-Entropy (BCE) loss
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Figure 8.3. Schematic of Interaction Graph Neural Network (Interaction GNN).

• AdamW Optimizer:

– α = 0.001,β1 = 0.9,β2 = 0.999,

– amsgrad=True, weight_decay=0.01

• Learning rate: α = 0.001

• Activation Normalization: Layer Norm

• Batch size: 1

• Data split: [90%,5%,5%]

Figure 8.4 shows the output of the Interaction Network on the test dataset:

Figure 8.4. Model outputs on test dataset for true and fake edges.

The probability of false edges peaked around 0, on the other hand, the proba-

bility of predicted true edges peaked around 1. The fraction of false edges is

much higher than the true edges, which is due to the imbalance in our dataset.

The performance of the network, i.e. its ability to distinguish true and false

edges, is evaluated using the AUC metric. The ROC curve is drawn using
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edge efficiency and edge purity (see Section 5.4.6). The edge efficiency (εE)

is a fraction of selected true edges, and edge purity (pE) is the fraction of

true edges among the selected ones. From the ROC curve, we obtain the AUC

value to be 0.9997. The higher AUC values show higher network performance.

The Figure 8.5(a) shows the ROC curve built from the edge efficiency and edge

purity, and Figure 8.5(b) shows edge efficiency and purity for various values

of edge score cuts.

Figure 8.5. Model evaluation: εE and pE as a function of edge score cut (left), ROC

with AUC = 0.9997 (right).

The edge score cut of s = 0.5 gives εE = 0.992 and pE = 0.990. The signal to

background rejection as function of edge score cuts is shows in Figure 8.6.

Figure 8.6. Signal to Background rejection of IGNN for various edge score cuts.

The background rejection rate is defined as one over misidentification rate

(εbkg), where εbkg is the fraction of fake edges that pass the edge score cut,

whereas the signal efficiency (εsig) is defined as the number of true edges pass-

ing the edge score cut, divided by the total number of true edges. Table 8.1
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shows the signal efficiency, misidentification rate, and background rejection

rate for score cuts of 0.5 and 0.7.

Table 8.1. Signal efficiency, misidentification rate and background rejection rate for
an edge score cut of 0.5 and 0.7.

Edge score Signal efficiency Misidentification rate Background rejection rate

0.5 0.992 0.0099 101.4

0.7 0.977 0.0049 213.5

Increasing the edge score cut decreases the signal efficiency but results into a

high background rejection rate.

8.1.4 Track Formation

The DBSCAN method is used to form tracks from the edge scores. To choose

an optimal value of εdb for DBSCAN (see Section 7.1.4 for details), I scanned

tracking efficiencies, tracking purity and clone rate as function of εdb as shown

in Figure 8.7.

Figure 8.7. The efficiency and purity curves for various εdb values.

Three values of εdb are marked with vertical lines at 0.20 (black), 0.25 (ma-

genta), and 0.30 (black). The smaller εdb values indicate a high cut on the

edge score. We chose the middle value for εdb = 0.25 based on high tracking

efficiencies, track purity, and relatively low clone rates. In the case of bidirec-

tional graphs, the DBSCAN method gives the weakly-connected-components
of the graphs that are taken as track candidates. For 2 ·103 events, track forma-

tion took approximately 6 minutes and 31.4 seconds (real-time) with a single

worker, whereas it took 32.1 seconds (real-time) with eight workers to process

all events on an Intel Core i7 CPU with 16 GB of RAM.
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8.2 Track Evaluation
The track evaluation is performed according to the method described in Sec-

tion 4.2. The evaluation criteria are taken as mentioned in Section 7.2 for the

Euclidean case. For a matching fraction > 50%, Nt ≥ 7 STT hits for recon-

structable particles and Nr ≥ 5 STT hits for reconstructed tracks, the results

are shown in Table 8.2:

Table 8.2. Tracking efficiencies, ghost rate (GR), clone rate (CR) for Nt ≥ 7, Nr ≥ 5

and MF > 50%.

Nt Nr MF [%] εphys. [%] εtech. [%] GR [%] CR [%]

7 5 > 50 91.0±0.309 92.6±0.318 1.25±0.322 11.5±0.082

We observe an almost 20% rise in the technical and physical tracking effi-

ciencies compared to the Euclidean case. Furthermore, we see that the ghost

rate decreases by 66% and the clone rate by 33%, see Table 7.2. Hence, we

observe a significant improvement in the model’s performance trained on com-

plete graphs for the same evaluation criteria. Furthermore, a track evaluation is

performed to investigate the dependence of tracking efficiencies on the trans-

verse momentum (pt), lab polar angle (θ ), and the azimuthal angle (φ ), see

Equation 7.1 for these variables.

The tracking efficiencies as a function of pt are shown in Figure 8.8. The

number of selected, reconstructable, and matched particles for various values

of pt are shown on the left panel. On the right, corresponding tracking effi-

ciencies are shown as a function of pt .

Figure 8.8. Number of selected, selected and matched, reconstructable, and recon-

structable and matched tracks (left) and tracking efficiencies (right) vs pt .

The tracking efficiencies have significantly improved for various pt values

compared to the efficiencies shown in Figure 7.8 for the Euclidean case. Most

importantly, the gain in efficiencies at pt < 0.2 GeV/c is nearly as high as

80%, which we recall was the upper limit in the Euclidean case. This is the

region where one expects spiraling and intersecting trajectories. Recall that,

to fully traverse STT, a particle needs a minimum pt > 0.25 GeV/c (see Eq.
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3.5). For high pt values, the tracking efficiencies gradually rise as the particle

trajectories are relatively straight; hence the efficiencies are relatively high.

It is also interesting to look into how the tracking efficiencies depend on the

different values of θ as shown in Figure 8.9. Compared to the results shown

in Figure 7.9, not only the tracking efficiencies are higher for whole θ−range,

but also there is a significant gain in efficiencies near the boundaries of the

STT acceptance.

Figure 8.9. Number of generated, reconstructable and matched tracks (left) and track-

ing efficiencies (right) as function of θ .

The number of selected, reconstructable, and matched particles as a function

of θ is shown on the left panel. One can see that the number of reconstructed

particles is homogeneously distributed over the whole θ range that corre-

sponds to the STT acceptance. Small dips at the edges are the boundaries

of STT acceptance, hence a small drop in tracking efficiencies as shown on

the right panel of Figure 8.9.

The dependence of the efficiency on the azimuthal angle φ is shown in

Figure 8.10.

Figure 8.10. Number of generated, reconstructable and matched tracks (left) and

tracking efficiencies (right) as function of φ .

Apart from two dips in curves at ±90◦, the particles are reconstructed equally

well at different regions of the STT. The dips correspond to a vertical gap
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reserved for the cluster-jet target and target-beam dump; hence a fraction of

particles are lost. The loss in efficiency, therefore, should not be attributed

to the tracking algorithm but to the hit acceptance. This is also illustrated by

the difference in the technical and the physical efficiency in the right panel of

Figure 8.10.

Lastly, I looked into tracking efficiencies for μ+ and μ− separately as a

function of pt , shown in Figure 8.11.

(a) Positive Charge (b) Negatitive Charge

Figure 8.11. Tracking efficiencies for positive (right) and negative (left) muons as

function of pt .

The efficiency curves for both categories of muons are similar; hence one can

conclude that the efficiencies are independent of the charge of reconstructed

particles. One can see more clearly in Figure 8.12 where the difference in

overall tracking efficiencies, εphys., for positive and negative charges is shown.

Figure 8.12. Efficiency difference for positive and negative charge as a function of pt .
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8.3 Summary of Results

Similar to the results shown in Table 7.3, the tracking efficiencies, ghost rates,

and clone rates are calculated for various MF greater than 50% (loose), 75%

(moderate) and 95% (strict), and two different values of Nr that are taken as

5 and 6 for reconstructed tracks. The values of Nt is kept as ≥ 7 STT hits for

reconstructable particles. The results are summarized in Table 8.3.

Table 8.3. Tracking efficiency, ghost rate (GR), clone rate (CR) for loose, moderate
and strict matching criteria with at least 5 and 6 hits for reconstructed tracks.

Nt Nr MF [%] εphys. [%] εtech. [%] GR [%] CR [%]

7 5 > 50 92.0±0.312 93.0±0.319 1.34±0.315 14.1±0.090

7 5 75 81.7±0.286 82.4±0.292 3.56±0.310 21.3±0.115

7 5 95 74.8±0.268 75.4±0.274 5.78±0.304 25.5±0.127

7 6 > 50 91.0±0.309 92.6±0.318 1.25±0.322 11.5±0.082

7 6 75 81.0±0.284 82.4±0.292 3.23±0.317 19.1±0.110

7 6 95 74.1±0.267 75.4±0.274 5.28±0.312 23.6±0.124

There is a significant improvement in all track evaluation parameters compared

to Euclidean case, see Section 7.3 for a comparison. The gradual drop in

efficiencies for different matching criteria is rather small. The rise in ghost rate

is much smaller and even for the strict criteria it is slightly above 5%, which

is a significant improvement. However, the clone rate is still higher than 10%

for any case shown in Table 8.3 which is understood as the inefficiency of the

DBSCAN method at low pt that gives rise to intersecting tracks.

In Figure 8.13, an example of a true (left) and reconstructed (right) event

is shown. The tracks from crossing or overlapping tracks are broken by the

DBSCAN method.

Figure 8.13. An example of a true and a reconstructed event.
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The drop in efficiency and the high clone rate is the result of crossing or over-

lapping tracks in the events. One can verify this assumption by choosing a

clean sample where none of the tracks cross or overlap. For events that con-

tain well-separated tracks, the overall tracking efficiency rises to 97.6% with a

ghost rate of 0.220% and a clone rate of 7.92%. The clone rate is reduced to al-

most half of the original value in this case. The remaining loss in efficiency is

caused by occasional tracks with extremely low pt. Here, our graph construc-

tion heuristic failed to properly build ground truth of a graph, see Figure 8.13

(right). In such cases, the edge classification shows a strange behavior: some

true edges are marked as false and some of false ones are marked as true.

Hence, a better heuristic method designed for curling particles will increase

tracking efficiencies. To tackle high clone rate, one needs a track-building

method that can handle shared hits resulting from intersecting particles, see a

discussion on a walkthrough algorithm and its integration with the DBSCAN

or CCL in Section 7.3.
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9. Hyperon Reconstruction in the STT

The next step is to investigate how the GNN algorithm performs with strongly

interacting hadrons, such as pions and protons. Furthermore, we want to know

whether our algorithm can reconstruct tracks that originate a measurable dis-

tance from the interaction point. Therefore, in this chapter I have investigated

the p̄p → Λ̄Λ → p̄π+pπ− reaction. The final states are produced at a sec-

ondary decay vertex due to the weak decay of the Λ and Λ̄. Hence, this is

a suitable benchmark for track reconstruction at the PANDA experiment. In

the following, this reaction is discussed briefly, before reconstructing the final

state particles using geometric deep learning.

9.1 The p̄p → Λ̄Λ Reaction

The Λ hyperons have a long lifetime (∼ 10−10 s), thus they fly a measurable

distance in the detector before decaying. The Λ hyperons themselves are neu-

tral and therefore, they leave no signals in the detector. The reaction is shown

in Figure 9.1.

Figure 9.1. The topology of p̄p → Λ̄Λ reaction in the Center-of-Mass (CM) frame of

the reaction. Image is credited to Ref. [10].

I have chosen to study this reaction at a beam momentum of 1.64 GeV/c, where

both previous measurements by the PS185 experiment and other PANDA sim-

ulation studies, have been performed. The production model is based on

a parametrization of data from PS185 at the Low Energy Antiproton Ring

(LEAR). They found the production cross section at pbeam = 1.64 GeV/c to be

σ(pp̄→ΛΛ̄)= 64±0.4±1.6μb [14]. For beam momenta pp̄ < 1.667 GeV/c,
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it was found that the differential cross-section can be parameterized by follow-

ing Legendre polynomial [175].

P(x) = a0 +a1x+a2(0.5(3x2 −1))+a3(0.5(5x3 −3x)) (9.1)

where x= cosθ and θ is the production angle of Λ̄ in the Center-of-Mass (CM)

frame of the reaction. The coefficients, a, are given as:

a0 = 1 (9.2)

a1 =−5.053+5.701pp̄ −1.131p2
p̄ (9.3)

a2 =−7.078+7.484pp̄ −1.490p2
p̄ (9.4)

a3 =−7.439+7.298pp̄ −1.399p2
p̄ (9.5)

This means that the scattering angular distribution of the produced antihyperon

is strongly peaked in the forward direction of the p̄p CM system, as shown in

Figure 9.2. As a result, the Λ peaks in the backward direction in the CM

system which means that in the lab system, it is close to at rest.

Figure 9.2. The angular distribution of cos(θ) in the Center-of-Mass (CM) frame of

the p̄p → Λ̄Λ → p̄π+pπ− reaction.

9.1.1 Reaction Kinematics

Let’s first look into the reaction in terms of the kinematics of the final state

particles, to learn what kind of detector signals we expect. In total, 106 events

are simulated for visualizing the reaction kinematics. The longitudinal (pl)

versus transverse (pt) momentum distribution of all decay particles are shown

in Figure 9.3.
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Figure 9.3. The MC pl versus pt distributions of all decay products.

The distributions represent the undistorted MC truth data and do not include

any smearing effects or detector inefficiencies. One can also learn a lot by

studying the magnitude of the momentum (|p|) versus the polar angle (θ ) of

emitted particles in the lab frame. The |p| versus θ distributions for all gener-

ated final state particles are shown in Figure 9.4.

Figure 9.4. The MC |p| versus θ distribution of the Λ, Λ̄ and their decay products.

The blue lines indicate the STT acceptance.

Here, we consider the ideal case, i.e. the angles and momenta are the Monte

Carlo truth, hence not distorted by the detector resolution and acceptance. One

should note that the relation between the particle lab angle and the detector
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coverage is not one-to-one since the tracks may not originate in the interaction

point. Hence, a track angle of a particle from a displaced vertex is not the same

as the angle of a detector module. The figure shows that the Λ and Λ̄ hyperons

are preferentially emitted in the forward direction, though their decay products

go in many different directions. The protons (p̄, p) take the larger share of the

momentum, while only a small fraction goes to the pions (π+,π−).

The decay vertex distribution of Λ and Λ̄ hyperons is shown in Figure 9.5.

We see that the final state particles often will be produced several centimeters

away from the IP. However, a tiny fraction of Λ hyperons is produced at or

close to the IP.

Figure 9.5. The MC decay vertex distribution of Λ and Λ̄.
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9.2 Geometric Deep Learning Pipeline

In this section, we will briefly describe the stages of the GDL pipeline (see

Chapter 8) to reconstruct the final state particles p̄,π+, p and π− from the

p̄p → Λ̄Λ → p̄π+pπ− reaction.

9.2.1 Data Preparation

The data presented in this study consist of 105 p̄p → Λ̄Λ → p̄π+pπ− events,

generated by PandaRoot. In addition, the total charge from these particles also

changes on an event-by-event basis as antiproton in many events escape the

STT. The distribution of the number of hits per event is shown in Figure 9.6.

Figure 9.6. The number of hits per event in in STT.

From the machine learning point of view, data produced by the STT for this

reaction is relatively sparse. The distribution shows that detector hits in a large

fraction of events are around 50 hits. A tiny fraction of events has more than

150 hits.

9.2.2 Edge Construction

The input graphs are built from the edges using the same method as described

in Section 8.1.2 with a slight modification: due to the sparsity of data, the

condition of edge construction in the adjacent sectors has been relieved. As a

result, edge construction is performed in the whole rφ−plane. This choice is

made for two reasons: (i) to decrease the data sparsity, (ii) to have both true

and false edges in the data. The latter is particularly important as a significant

fraction of events is found with ≤ 3 tracks that are sometimes not in the ad-

jacent sectors. As a result, the input graphs contain only the true edges. The

number of edges created in this reaction is shown in Figure 9.7.
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Figure 9.7. The histogram shows true (orange), false (green) and total (blue) edges

constructed from the dataset.

In certain events, the number of edges go beyond 1000, these are the events

where a pion is found to be curling inside the STT (see Figure 9.13).

9.2.3 Edge Classification

The edge classification is performed using the IGNN on the same lines as in

Section 8.1.3. The model output is shown in Figure 9.8.

Figure 9.8. Model outputs on test dataset for true and false edges.

The number of true edges peaks around the edge score of 1, whereas the fake

edges peak around the edge score of 0. A small bump is discerned in the model

output around the edge score of 0.7 (recall Figure 8.4 with the same behavior).
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Figure 9.9. Reconstructed event with model output between 0.6 and 0.8.

Figure 9.9 shows filtered edges between edge scores of 0.6 and 0.8 with false

negative (blue), false positive (red), and true positive (black) edges, where

green is the true graph. By zooming in on this region, one can see that our

model has wrongly labeled certain false edges as true and vice versa. This

might be due to the bad construction of the ground truth graph for curling

particles.

Further, the model is evaluated using the Area Under the ROC (AUC). The

ROC is drawn using the edge purity and edge efficiency (see Section 5.4.6 for

definitions). In addition, both edge purity and efficiency for various edge score

cuts are also measured. The curves are shown in Figure 9.10.

Figure 9.10. Model evaluation: ROC with AUC > 0.9988 (right), edge efficiency and

edge purity as a function of edge score cut (left).
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The high AUC value indicates high model performance during the training

process. Increasing the score cut, the edge purity increases and edge efficiency

decreases, and vice versa. The background rejection rate (1/εbkg) versus the

signal efficiency (εsig) for various edge scores is shown in Figure 9.11.

Figure 9.11. Signal efficiency versus background rejection rate of IGNN.

The signal efficiency (εsig), misidentification rate (εbkg) background rejection

rate (1/εbkg) for edge score cuts of 0.5 and 0.7 are shown in Table 9.1.

Table 9.1. Signal efficiency, misidentification, and background rejection rates for an
edge score cut of 0.5 and 0.7.

Edge score Signal efficiency Misidentification rate Background rejection rate

0.5 0.987 0.021 46.9

0.7 0.976 0.011 90.1

9.2.4 Track Formation

The DBSCAN method is used as described in Section 6.2.4 for track forma-

tion. I scanned the εdb parameter for the hyperon data used in this chapter to

find its optimal value. For this purpose, I have calculated tracking efficien-

cies, tracking purity, and clone rate for different values of εdb, where lower

εdb values indicate higher edge score cut. For the track evaluation, we require

matching fractions greater than 50%. Figure 9.12 shows εdb indicated by lines

at 0.10 (black), 0.15 (magenta), and 0.20 (black), respectively.

Among the three values of εdb indicated by vertical lines at 0.1 (black),

0.15 (magenta), 0.2 (black), the value of 0.15 is chosen for the DBSCAN.

This value yields overall tracking efficiency of 87.1± 0.536% with a clone
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rate of 3.79±0.087% and a ghost rate of 0.44±0.621%. However, two other

choices of εdb produced similar results. In total, 2 ·103 events are used in track

formation that took approximately 32.1 seconds (real-time) with eight workers

to process all events on an Intel Core i7 CPU with 16 GB of RAM.

Figure 9.12. The efficiency and purity curves for various εdb values. The smaller εdb

values indicate high cut on edge score.

9.3 Track Evaluation

The track evaluation is performed according to the method described in Sec-

tion 4.2. The evaluation criteria are taken as mentioned in Section 7.2. For a

matching fraction of > 50%, Nt ≥ 7 STT hits for reconstructable particles and

Nr ≥ 5 STT hits for reconstructed tracks, the results are shown in Table 9.2.

Table 9.2. Tracking efficiencies, ghost rate (GR), clone rate (CR) for Nt ≥ 7, Nr ≥ 5

and MF > 50%.

Nt Nr MF [%] εphys. [%] εtech. [%] GR [%] CR [%]

7 5 > 50 89.6±0.548 97.1±0.620 0.46±0.609 4.88±0.098

The low clone-rate is expected with this kind of low-multiplicity reaction,

which is in contrast to the 5 muon pair case studied in Chapter 7 and Chapter 8.

However, there is an occasional occurrence of low-momentum pions curling

inside the STT, hence the drop in tracking efficiency. Figure 9.13 shows two

example events where a low pt particle curls inside the STT.
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Figure 9.13. Low pt particles curling inside the STT.

The tracking efficiencies are measured as a function of the transverse mo-

mentum (pt), the polar lab angle (θ ), the azimuthal angle (φ ) and the radial

distance (d0) between the interaction point and the decay vertex:

d0 =
√

v2
x + v2

y (9.6)

where vx and vy are vertex positions in XY-plane.

In Figure 9.14, the left panel shows the number of selected, reconstructable,

and matched particles as a function of pt , and the right panel shows the track-

ing efficiencies as a function of pt .

Figure 9.14. Number of selected, reconstructable, and matched particles (left), and

tracking efficiencies (right) as function of pt .

The large error bars at large pt arise due to the small number of tracks gener-

ated in this region. This is also illustrated in the left panel, which shows the

number of selected, reconstructable, and matched particles. The dip in εphys.
may be attributed to the fact that we have two different particle species, i.e.
pions and protons, with very different kinematic properties. As a result, the
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left panel of Figure 9.14 can be understood to contain two distributions, one

peaking at low pt and one peaking at large pt . The dip is the region between

these distributions, and here, the hit acceptance is lower due to the design of

the detector. Note that in Figure 9.14, the bin size varies between 0 and 0.6

with a larger size towards high pt .

The tracking efficiencies as function of θ are shown in Figure 9.15.

Figure 9.15. Number of generated, reconstructable and matched tracks (left) and

tracking efficiencies (right) as function of θ .

The number of selected, reconstructable, and matched particles are shown in

the left panel. Tracking efficiencies as a function of θ are displayed on the

right. Both efficiencies are similar up to 80◦; however, there are few generated

tracks at large polar angles, in line with Figure 9.4.

The tracking efficiencies as a function of φ are shown in Figure 9.16. One

can conclude that tracking efficiencies are not dependent on the φ angle; hence

our machine learning method is not biased towards a particular slice of φ . As

discussed in Chapter 7 and Chapter 8, the small dip at ±90◦ indicates the gap

between two halves of the STT.

Figure 9.16. Number of generated, reconstructable and matched tracks (left) and

tracking efficiencies (right) as function of φ .

The final state particles from the p̄p → Λ̄Λ → p̄π+pπ− reaction are generated

away from the IP due to Λ hyperons flying a measurable distance from the IP
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before decaying. Therefore, I have investigated how the single-track recon-

struction efficiency varies with the distance from the IP. The radial distance

parameter d0 defined in Equation 9.6 quantifies the position of secondary de-

cay vertices of the final state particle from the IP in rφ−plane of STT. The

tracking efficiencies as function of d0 are shown in Figure 9.17:

Figure 9.17. Number of selected/generated, reconstructable and matched tracks (left)
and tracking efficiencies (right) as function of the distance to the IP, denoted d0.

From the left panel showing the number of tracks, it is clear that a significant

fraction of particles is generated close to the interaction point. However, a

reasonable fraction of final state particles is produced away from the IP. Our

method has reconstructed these particles reasonably well up to at least 10 cm

away from IP; beyond that, one cannot decisively determine the performance

in terms of efficiency, however, the flat dependence of the efficiency on the dis-

tance d0 is promising. Hyperons produced in different reactions, for example,

from Ξ or Ω decays, can be used for this purpose.
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It is also relevant to study the reconstruction of pions and protons sepa-

rately. The tracking efficiencies are calculated as a function of pt and d0. The

results are shown in Figure 9.18. A large fraction of protons are emitted at

relatively large pt i.e. between 0.15 to 0.4 GeV/c. On the other hand, most

of the pions are emitted below 0.15 GeV/c. It is reassuring and also quite re-

markable that our method can reconstruct pions of such low momentum, given

that low pt tracks have been a stumbling block for other track reconstruction

algorithms. This is an important result as it will allow to study other hadron

physics reactions, from example, p̄p → Ξ̄+Ξ−,Ω̄+Ω− as shown in Figure 4.1.

(a) p̄ (b) π+

(c) p (d) π−

Figure 9.18. Tracking efficiencies as a function of pt for protons and pions.
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Another important aspect of hadron physics reactions is the secondary de-

cay vertices due to long lived particles especially hyperons. It is also inter-

esting to see how tracking efficiencies vary for each particle with the distance

between primary and secondary vertex. To investigate this, tracking efficien-

cies are shown as a function of d0 for each proton and pion separately, see

Figure 9.19.

(a) p̄ (b) π+

(c) p (d) π−

Figure 9.19. Tracking efficiencies as a function of d0 for protons and pions.

By looking into single track efficiencies (red curves) for all particles, one can

conclude that the efficiency is rather flat, and one cannot really say that the

efficiency seems to drop at large d0 due to less number of particles produced

at higher d0 values. As shown in Ref. [18], most Λ hyperons from Ξ− and

Ω− decays (see Figure 4.1 for reaction topologies) also decay at d0 < 15 cm.

Hence, this algorithm seems promising for the hyperon channels of interest.
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9.4 Summary of Results

Similar to the results shown in Table 8.3, the tracking efficiencies, ghost rates,

and clone rates are calculated for various MF greater than 50% (loose), 75%

(moderate) and 95% (strict), and two different values of Nr that are taken as

5 and 6 for reconstructed tracks. The values of Nt is kept as ≥ 7 STT hits for

reconstructable particles. The results are summarized in Table 9.3.

Table 9.3. Tracking efficiency, ghost rate (GR), clone rate (CR) for loose, moderate
and strict matching criteria with at least 5 and 6 hits for reconstructed tracks.

Nt Nr MF [%] εphys. [%] εtech. [%] GR [%] CR [%]

7 5 > 50 89.6±0.548 97.1±0.620 0.46±0.609 4.88±0.098

7 5 75 84.3±0.524 91.1±0.591 2.05±0.601 8.97±0.135

7 5 95 79.4±0.502 85.7±0.565 3.45±0.595 12.7±0.163

7 6 > 50 87.1±0.536 96.5±0.617 0.44±0.621 3.79±0.087

7 6 75 82.2±0.514 91.1±0.591 1.87±0.614 7.71±0.127

7 6 95 77.5±0.493 85.7±0.565 3.26±0.608 11.5±0.158

Using the minimum hits for reconstructed tracks (Nr) as 6 STT hits, the track

efficiency for reconstructable tracks, εtech., is slightly higher than Nr ≥ 5 STT

hits for various MFs. The ghost and clone rates also decrease when Nr ≥ 6

is used instead of Nr ≥ 5. However, in either case, the efficiencies drop when

the value of the matching fraction is increased, resulting in a large ghost rate

and clone rate. Overall, the tracking efficiencies are acceptable for the various

criteria we investigated [29] for 50% and 75% matching fractions.

The track reconstruction was performed in the rφ−plane of the STT; afore-

mentioned results can be further improved by including the z−axis and in-

corporating the MVD and GEM detectors. In this manner, not only will the

hit statistic per event improve, but in addition, more final state particles will

be included in the sample. Moreover, handling the curly tracks with a robust

ground truth algorithm will improve the above results. Both of these tasks

are under development. To record the forward going Λ̄ hyperons, the forward

tracking stations in the Forward Spectrometer will play an essential part in

hyperon reconstruction. The particle reconstruction with the forward tracking

stations using geometric deep learning has been explored in Ref. [19].

118



Part III:
Hyperon Simulations with Realistic Target
Profiles





10. Goals and Strategies

To study the effects of residual gas from the cluster-jet target on the possi-

bility to distinguish a reaction of interest from the background, the reaction

p̄p → Λ̄Λ → p̄π+pπ− at a beam momentum of 1.64 GeV/c has been used as

a benchmark channel. The reason for this choice is that this reaction has been

rigorously studied at the PS185 experiment at this beam momentum and hence

the features of this reaction are well-known. This study is performed for both

point-like and extended target profiles, and for both the reaction of interest and

the most likely background channel. To compare the different target scenarios,

a figure-of-merit (FoM) is defined that is given in Section 10.1.

10.1 Figure of Merit
In this study, we define the figure-of-merit (FoM) as the expected ratio of

events from the signal channel (pp̄ → ΛΛ̄ → p̄π+pπ−) and the non-resonant

background (pp̄ → p̄π+pπ−) channel weighted by cross sections and decay

branching fractions:

FoM =
ε(pp̄ → ΛΛ̄)

ε(pp̄ → p̄π+pπ−)
· σ(pp̄ → ΛΛ̄) ·BR(Λ → pπ−)2

σ(pp̄ → p̄π+pπ−)
(10.1)

Here, ε denotes the global reconstruction efficiency after applying a set of
event selection criteria. The cross sections and branching fractions are given
in Table 10.1. We will come back to these numbers in in Section 11.1.1 and
Section 11.1.2.

Table 10.1. Cross sections and branching fractions for signal as well as non-resonant
background as described in Section 11.1.1 and Section 11.1.2.

σ ( p̄p → Λ̄Λ → p̄π+pπ−) BR(Λ → pπ−) σ( p̄p → p̄π+pπ−)

64.1±0.4±1.6 μb 63.9±0.5% 15.4±5.2 μb

This figure-of-merit tells us how well we will be able to suppress the back-

ground from a reaction with the same final state particles. The p̄,π+, p and

π− from the non-resonant channel originate in the IP, whereas the correspond-

ing particles from Λ and Λ̄ decays originate from the decay vertices which are

typically at least a few centimeters away from the IP. Furthermore, the pπ−
(p̄π+) from a Λ (Λ̄) decay have different kinematic properties (e.g. invariant

mass) than those produced in a non-resonant reaction.
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10.2 Strategy

The strategy adopted in this work is to calculate the FoM for an ideal, i.e.
point-like, target, denoted as IdealIP case (Chapter 11). Next, using the same

analysis procedure as in the case of IdealIP, the FoMs of the extended target

profile scenarios are calculated (Chapter 12). I have considered two extended

target profiles, denoted NormalIP and NormalIP+Cryo (see Section 3.5). Fi-

nally, the FoM from IdealIP, NormalIP and NormalIP+Cryo cases are com-

pared (Section 12.3).
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11. Hyperon Reconstruction using a Point-like
Target

The p̄p→ Λ̄Λ→ p̄π+pπ− reaction been rigorously studied within the PANDA

simulation framework [9, 10, 17, 18, 174, 175] but until now only with an

ideal, i.e. a point-like, target. In the analysis presented here, I use the event

selection criteria defined in Ref. [10], but with an updated version of the Pan-

daRoot software. By using the same criteria, we can compare this analysis

with the analysis to the one in Ref. [10]. This provides an important bench-

mark of the updated software. However, the main purpose of simulating the

point-like case is to have a reference, or a "best case scenario", to compare

with the simulations where a more realistic target profile is used.

11.1 Data Generation
For the analysis, the signal channel as well as the non-resonant background

channels are simulated at a beam momentum of 1.642 GeV/c. To quantita-

tively compare the two samples, e.g. when calculating the FoM, one needs to

apply relative weights to each sample based on their cross-sections. The data

generation and weight calculation are discussed below.

11.1.1 The Signal

The signal channel of interest is the p̄p → Λ̄Λ reaction, where the Λ̄Λ states

are produced through the strong interaction according to the model where the

Λ̄ is produced with a forward peaking distribution in the CM system, see Sec-

tion 9.1 and the figure therein. The Λ hyperons further decay through the weak

interaction, where the most prominent decays Λ → pπ− and Λ̄ → p̄π+ have a

branching fraction of BR(Λ → pπ) = 63.9± 0.5% [5]. We assume the same

BR for Λ̄ → p̄π+.

The weak decays Λ → pπ− and Λ̄ → p̄π+ are simulated using a flat phase

space distribution i.e. ignoring the polarization and spin correlations. This is

considered sufficiently realistic for this comparative study.

11.1.2 Non-resonant Background

The most relevant background considered for this study is the non-resonant

p̄p → p̄π+pπ− channel, where final state particles are the same as in the sig-
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nal sample. The main difference is that in the case of the non-resonant back-

ground, all final state particles originate in the IP. Also the background sample

is simulated using a flat phase space distribution for all final state particles

with no intermediate Λ or Λ̄.

There is no established world-average value for the production cross-section

of the non-resonant channel. However, several collaborations have reported

different, somewhat conflicting values. The differences could be due to model

dependencies arising from the multitude of possible intermediate states (ΔΔ,

p̄pρ , etc). Therefore, the weighted average cross section is calculated to be

σ( p̄p → p̄π+pπ−) = 15.4±5.2 μb as described in Ref. [10].

11.1.3 Sample Sizes and Weights

I have generated 106 events of each channel, and propagated them through

the PandaRoot simulation chain explained in Subsection 3.6.1. The large sim-

ulated samples ensures small statistical uncertainties. To compare the yield

of the non-resonant background channel with the signal reaction, we define

a weight to account for the difference and the reduction due to the branching

fraction of the Λ and Λ̄ decay:

wbkg =
Nsignal

Nbkg

σ(p̄p → p̄π+pπ−)
σ(pp̄ → ΛΛ̄) ·BR(Λ → pπ)2

(11.1)

where Nsignal and Nbkg are the sizes of signal and background samples. By
applying these weights, the obtained yields can be compared using the Figure
of Merit defined in Equation 10.1, hence the yields will give an idea of the ex-
pected signal-to-background ratios. The values of cross-sections and branch-
ing ratios are given in Table 10.1. In total, one million events are generated
for each channel. The relative weighting factors for non-resonant background
summarized in Table 11.1.

Table 11.1. The sample size, cross-section and weight factors of signal and non-
resonant background channels.

Channel p̄p → Λ̄Λ → p̄π+pπ− p̄p → p̄π+pπ−

Generated 106 106

Cross section [μb] 64 15.4
Weighting factor 1 0.589

11.2 Analysis Procedure

The analysis is subdivided into two stages: the pre-selection and the final
selection. The two-staged event selection is motivated by the simplicity in
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the data handling and the computing time for large data samples. In principle,

both stages can be combined into one single event selection stage.

In the pre-selection, a coarse set of criteria is imposed to reconstruct the

full event topology and to reject poorly reconstructed events. At this stage,

an ideal particle identification (PID) match is performed for all charged tracks

i.e. each track is correctly assigned a particle type. At present, the PID al-

gorithms of PandaRoot are not fully tested, especially not for hyperons. Fur-

thermore, in this study it is desirable to minimize all uncertainties that can be

attributed to anything else than the interaction volume. In the final selection,

emphasis is given to the capability of the event selection algorithm to suppress

non-hyperon background. After the final selection, one can calculate the final

reconstruction efficiency. These steps are explained in the following sections.

11.2.1 Pre-selection

In pre-selection, exclusive pp̄ → Λ̄Λ reaction where Λ̄ → p̄π+ and Λ → pπ−
will be reconstructed. The pre-selection criteria is applied according to Ref.

[10] that were optimized using the general hadronic background simulation

using the Dual Parton Model (DPM) [176]. This criteria will first be shortly

summarized and then discussed in more detail later.

1. Events with at least all final states of reaction are considered i.e. one

p, one π−, one p̄ and one π+ are considered. In addition, a mass

selection on reconstructed pπ− and p̄π+ is applied.

2. A vertex fit, requiring that the p and π− (p̄ and π+) come from the

same point in space, is applied. This fit has one one over-constraint

(1C). The combinations with a fit probability of less than 1% are

rejected, while those with a larger probability are labeled as Λ or Λ̄
candidates. For multiple Λ or Λ̄ candidates per event, the candidate

with the smallest χ2 is kept for further analysis.

3. The Λ and Λ̄ candidates are combined to reconstruct the initial kine-

matics of the p̄p−system. A successful kinematic fit, based on con-

servation of the initial p̄p four momentum, is required. Since the fit

has four over-constraints, it is denoted a 4C fit.

After applying the aforementioned pre-selection criteria, the complete reac-

tion topology can be reconstructed. At this point, each event contains exactly

one pp̄ → Λ̄Λ → p̄π+pπ− candidate. In the following, we will discuss the

selection criteria in more detail.

11.2.1.1 Pre-selection Mass Cut
At the start, events are selected if the final state contains at least one of each of

the expected p, π−, p̄ and π+, otherwise the event is rejected. Furthermore, all

possible combinations of p̄π+ and pπ− are taken into account to reconstruct
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Λ’s. At this point, the following coarse mass selection is applied:

|m(Λ̄)−m(p̄π+)|< 0.3 GeV/c2 (11.2)

|m(Λ)−m(pπ−)|< 0.3 GeV/c2 (11.3)

This mass selection cut on the invariant mass of p̄π+ and pπ− removes poorly

reconstructed events.

11.2.1.2 Vertex Fit and Selection of Best Candidate
The distinct feature of the pp̄ → Λ̄Λ reaction is the presence of two displaced

vertices arising from the weak decays: Λ̄ → p̄π+ and Λ → pπ−. Since the Λ
(and Λ̄) is neutral, it leaves no signal in the detector but has to be reconstructed

from its daughter particles whose tracks typically originate in a point separated

from the IP.

Two independent vertex fits are performed on all possible combinations of

pπ− and p̄π+. The location of the Λ decay vertex is unknown since the Λ
is neutral. Hence, the vertex position is the unmeasured parameters in the fit.

In a solenoid magnetic field, two constraints are associated with each track

originating from a common vertex [177, 178] giving in total four constraints

per vertex. The number of over-constraints is then given by the total number

of constraints (here 2*2), minus the number of unknowns (3). Hence, we have

one over-constraint and therefore we refer to the vertex fit as a 1C fit

(a) (b)

Figure 11.1. The vertex fit χ2 and probability distribution for Λ (black) and Λ̄ (green)

for signal sample.

In addition, the fit probability is required to be greater than 0.01, i.e. P > 0.01,

to exclude poorly reconstructed candidates. As P → 1, the increase in the

number of events is due to the covariance matrix from the Kalman Filter. After

applying the vertex fits, more than one Λ̄Λ pair might exist in one event. To

select the best pair of the event, the χ2 of the vertex fits are compared, and

the candidate with the smallest χ2 value is chosen for further analysis. In the
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end, at most one Λ̄Λ pair exist per event. The fit probabilities are shown in

Figure 11.1 for the signal sample.

11.2.1.3 Four Constraint (4C) Fit
Once the vertex fits are performed, each event consists of at most one Λ̄Λ
pair from which we can construct the initial p̄p− system that is kept for fur-

ther analysis. A four-constraint (4C) fit is applied which restricts the four-

momentum of the Λ̄Λ pair to the initial p̄p− system.

As a result of this fit, the four-momentum vectors of hyperons are re-calculated

with reduced but correlated uncertainties. The new values of the four-momentum

vectors will be used in final selection. The 4C fit probability for both signal

and non-resonant background is shown in Figure 11.2.

(a) (b)

Figure 11.2. The 4C fit χ2 and probability for signal sample (blue), the non-resonant

background (red). Histograms are scaled according to Table 11.1.

11.2.1.4 Results from the Pre-selection
Once the pre-selection criteria are applied, the reconstruction efficiency for

the p̄p → Λ̄Λ reaction can be calculated. The results are summarized in Ta-

ble 11.2.

We see that there is an excess of reconstructed particles with respect to the gen-

erated ones, in particular for p̄ and p in both samples. There are two known

reasons for this. First, a tiny fraction of the surplus is due to double-counting

of particles by the IdealTrackFinder. For example, when a particle hits the

middle of a silicon strip sensor in the MVD (i.e. close to the boundary of

two sensor cells), the hit can be included in two different tracks. The issue

of double-counting is specific to the IdealTrackFinder and its effect is almost

negligible. The second, and more important, reason is the production of sec-

ondary particles. In PandaRoot, this is done in the particle transport stage by

GEANT and it mimics the production of secondaries that we expect in the real

experiment. Hence, these particles are of a kind that we need to handle in
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Table 11.2. The reconstruction efficiency after the pre-selection for signal and non-
resonant background samples. The final states are obtained after the PID selection.
The Λs are obtained after the best vertex fit χ2 selection while the p̄p state after the
successful 4C fit.

Channel pp̄ → Λ̄Λ → p̄π+pπ− pp̄ → p̄π+pπ−

Generated 106 106

p̄ 1043690 1043463

p 1196514 1101627

π+ 1004109 935421

π− 834721 917451

Λ 905395 950820

Λ̄ 936510 889489

p̄p → Λ̄Λ 332079 379841

Efficiency % 33.20±0.07 37.98±0.07

real data. Secondary particles are included during the track building process,

and contribute significantly to the particle yield. However, at later event selec-

tion stages, when applying e.g. mass cuts, vertex fits and kinematic fits, these

secondaries will be filtered out.

The longitudinal versus the transverse momentum distributions of the Λ̄ and

Λ are shown in Figure 11.3 for signal sample. There is substantial amount of

correctly reconstructed Λ hyperons and Λ̄ anti-hyperons along the parabolas

shown in panels (a) and (b) of Figure 11.3.

(a) (b)

Figure 11.3. The longitudinal (pz) versus transverse (pt ) four-momentum distributions

of Λ̄ (left) and Λ (right) candidates after pre-selection for signal.

The signal sample contain background events distributed evenly in the mo-

mentum space. In panels (c) and (d) of Figure 11.4, the non-resonant back-

ground appears as a blob in the momentum space.
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(a) (b)

Figure 11.4. The longitudinal (pz) versus transverse (pt ) four-momentum distributions

of Λ̄ (left) and Λ (right) candidates after pre-selection for non-resonant background.

11.2.2 Final Selection

After the pre-selection, the sample is refined by applying additional quality

criteria. The purpose of the final selection is not only reduce the background

contribution, but also to exclude poorly reconstructed events as well. The

following final selection is used:

1. Selection on χ2 distribution of 4C fit

- χ2 < 100

2. Selection on invariant mass of p̄π+ and pπ−
- |mfit(p̄π+)−mPDG(Λ̄)|< 5 ·σmfit

(p̄π+) GeV/c2

- |mfit(pπ−)−mPDG(Λ)|< 5 ·σmfit
(pπ−) GeV/c2

3. Selection on the total z−distance from IP

- z f it(Λ̄)+ z f it(Λ)> 2 cm

The aforementioned final criteria are discussed in more detail in the following.

11.2.2.1 Selection on χ2 Distribution of 4C Fit
As described in Section 11.2.1.3, the 4C fit is applied to ensure four-momentum

conservation. In addition, we require χ2 to be smaller than 100. The motiva-

tion is to remove events where the particle momenta are poorly reconstructed.

Though originating from the reaction of interest, the data quality is insufficient

for e.g. spin studies. More details are given in Ref. [10]. This cut removes

approximately 22% of the events from the sample whereas ≈ 19% of events

are removed from the non-resonant background sample. It should be noted

that this cut is more effective in reducing the number of events with a different

number of particles in the final state. The χ2 distribution together with the cut

value is shown in Figure 11.5.
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Figure 11.5. χ2 distribution of signal (red) and non-resonant background (blue). The

cut value is marked with a line. Histogram are scaled according to Table 11.1.

11.2.2.2 Selection on Invariant Mass of p̄π+ and pπ−

After the fit quality criterion, a cut on the invariant mass of p̄π+ and pπ− is

applied. It is assumed that the shape of the peak corresponding to a Λ̄ or a Λ is

double-Gaussian, i.e. sum of two Gaussian distributions. The widths quantify

the resolution of the detector and the reconstruction. The double Gaussian fits

for invariant mass distributions are shown in Figure 11.6 for signal sample.

(a) (b)

Figure 11.6. The invariant mass resolution is obtained by double Gaussian fit on the

invariant mass distributions (a) m f it(p̄π+) and (b) m f it(pπ−) for the signal sample.

The parameters of double Gaussian function used for this fit are represented

by c1,μ1,σ1 for the first Gaussian (G1) and c2,μ2,σ2 for the second Gaussian

(G2). For example, in Figure 11.6(a), the G1 function fit yield 2.164 · 104,
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whereas G2 only yields 4846. Therefore, G1 has been used to define the mass

resolution of Λ̄. The double Gaussian fit to the invariant mass distributions

yields the mean values and widths for the Gaussian with the larger contribution

to the fit as shown in Table 11.3.

Table 11.3. Invariant mass of reconstructed Λ̄ and Λ.

Particle μmfit
[GeV/c2] σmfit

[GeV/c2]
p̄π+ 1.11590±0.00001 0.00268±0.00001

pπ− 1.11595±0.00001 0.00276±0.00002

The mass values are consistent with the PDG value of the Λ: mPDG(Λ̄) =
1115.683 ± 0.006 MeV/c2. The mass resolution is used to define invariant

mass cut and is defined as the five standard deviation around the PDG value of

the Λ mass:

|mfit(p̄π+)−mPDG(Λ̄)|< 5 ·2.680 ·10−3 GeV/c2 (11.4)

|mfit(pπ−)−mPDG(Λ)|< 5 ·2.756 ·10−3 GeV/c2 (11.5)

The invariant mass distributions of both Λ and Λ̄ for all samples is shown in

Figure 11.7.

(a) (b)

Figure 11.7. The invariant mass distributions of (a) m f it( p̄π+) and (b) m f it(pπ−) of

signal (blue) and non-resonant background (black) with the cut value (red lines). The

histograms are scaled according Table 11.1.

The mass window is marked by the vertical lines on this figure. It should be

noted that the distribution of non-resonant background is nearly flat within

this mass window while the signal has the shape of a well-pronounced peak.

However, the background is larger than the signal in some regions. This is

because the mass window is optimized by generic hadronic background from

the DPM generator rather than non-resonant background channel [10].
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11.2.2.3 Selection on the Total z−distance from IP
An important aspect of ground-state hyperons is their relatively long life time,

meaning they travel a measurable distance in the detector before decaying.

This results in a distinct topology with decay vertices well separated from

the point of production (IP). A selection criterion can be imposed on the dis-

placed vertex position. In a fixed target experiment, such as PANDA, the par-

ticles are boosted along the beam, or z−axis, which makes this displacement

particularly prominent along z−axis (see Figure 9.5). Therefore, we require

the sum of the displacement for Λ and Λ̄ decays to be larger than 2 cm, i.e.
z f it(Λ̄)+ z f it(Λ)> 2 cm [10].

Figure 11.8. The z f it(Λ̄)+ z f it(Λ) distribution of signal (blue) and non-resonant back-

ground (black) samples with cut value (red). The histograms are scaled according to

the Table 11.1.

The Figure 11.8 shows the z f it(Λ̄)+ z f it(Λ) distribution for both signal and

non-resonant background samples. The shape of signal sample is similar to

the exponential attenuation which is expected to be the case for such a distri-

bution. The background sample, however, peaks around z f it(Λ̄)+ z f it(Λ) = 0.

A cut value of z f it(Λ̄)+z f it(Λ)> 2 cm (shown as vertical line) removes a large

fraction of background events from the signal.

11.2.2.4 Results from the Final Selection
After the final selection is performed, the final efficiency is calculated. The

results are summarized in Table 11.4 for the signal as well as the non-resonant

background samples. It is important to note that the selection procedure on

signal and non-resonant background samples is performed independently of

each other.
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Table 11.4. The reconstruction efficiency after the final selection for signal and non-
resonant background. The weighted number of events is calculated according to Ta-
ble 11.1.

Channel pp̄ → Λ̄Λ → p̄π+pπ− pp̄ → p̄π+pπ−

Generated 106 106

Pre-selection 332079 379841

χ2 < 100 259308 307342

Mass cut 222344 28787

zΛ̄ + zΛ > 2 cm 200772 3443

Efficiency % 20.08±0.05 0.34±0.01

In Figure 11.9, the longitudinal (pz) versus transverse (pt) momentum distri-

butions of Λ and Λ̄ are shown. In the signal sample in Figure 11.9 (a) and

(b), the final selection has removed a large number of background and poorly

reconstructed signal events, compared to the corresponding figure from the

pre-selection, i.e. Figure 11.3. The remaining events lies along the parabolic

curves as show in Figure 11.9.

(a) (b)

Figure 11.9. The pz versus pt four-momentum distributions of Λ̄ (left) and Λ (right)

candidates after final selection for signal sample.

The momentum distribution of the non-resonant background sample is shown

in Figure 11.10 (a) and (b) for both the pπ− (p̄π+) falsely identified as Λ (Λ̄).

The signal events are what remain after applying the final selection. It shows

that only a tiny fraction of 0.32% events remain. The efficiency in our case is

slightly better than in the simulations performed in Ref. [27], where an older

version of the PandaRoot software was used. The events (signal) are aligned

along the parabolic curves in Figure 11.10 (c) and (d) as expected.
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(a) (b)

Figure 11.10. The longitudinal (pz) versus transverse (pt ) four-momentum distribu-

tions of Λ̄ (left) and Λ (right) candidates after final selection for non-resonant back-

ground.

11.3 The IdealIP Case

In the IdealIP case, perfect vacuum conditions exists inside the beam pipe.

Thus the internal target is considered to be a point-like target. Until now, all

PANDA simulation studies except in Ref. [179] have been carried out using

the IdealIP case.

We can now calculate the FoM using the information in Table 11.4, the

weights in Table 11.1 and Equation 10.1. This yields FoM as

FoM = 99 (11.6)

This constitutes a best-case scenario that serves as a reference when studying

the more realistic cases, i.e. the NormalIP and NormalIP+Cryo.
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12. Hyperon Reconstruction using Extended
Target Profiles

In this chapter, the results of benchmark studies for extended target cases will

be presented as described in Section 3.5. The IdealIP case, discussed in Chap-

ter 11, is used as a reference. Hence, we compare three different cases; one

ideal and two realistic ones.

12.1 The NormalIP Case

The vacuum simulations are performed by the cluster-jet target group at the

University of Münster [1], the resulting density profile of both target and resid-

ual gas is shown in Figure 12.1.

Figure 12.1. The density distribution of cluster-jet target as well as the residual gas

along the beam pipe, the NormalIP case. The histogram has been divided by the bin

width (due to variable bin width of data generated by the Münster Group [1]).

The density distribution defines an extended effective target region, i.e. the

density is non-zero outside the design interaction point, available for the in-

coming beam. In this case, no measures are taken to remedy the residual gas,

thus it represents one of the worst-case among the extended target cases. Due

to the non-zero target density outside the design IP, it is expected that the re-

quirement of displaced vertex positions will have a different impact on data
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that originate from interactions between the beam and the gas, compared to

the IdealIP case (c.f. Chapter 11). This is because in case of an IdealIP, the

location of the production vertex can be considered known with infinite preci-

sion while for a realistic target volume, one needs to reconstruct it by tracking

the neutral Λ and Λ̄ back to a common vertex. Alternatively, one can, as we

have done here, still assume that the interaction takes place in the ideal point,

although this is only approximately true: The proton-pion invariant mass is

also sensitive to the point of origin. In the following, the invariant mass and

decay vertex selection from the final selection will be discussed.

12.1.1 Invariant Mass Selection

First, a double Gaussian fit is applied to the invariant mass distributions of

both Λ and Λ̄ particles as shown in Figure 12.2.

(a) (b)

Figure 12.2. The invariant mass resolution is obtained by double Gaussian fit on the

invariant mass distributions (a) m f it(p̄π+) and (b) m f it(pπ−) for the signal sample

only, the NormalIP case.

Second, the mass resolution is extracted from the Gaussian fitting the largest

contribution to the fit. The fits yields the mean values as μmfit
(p̄π+) = 1.116

GeV/c2, μm f it (pπ−) = 1.116 GeV/c2 and the width as σmfit
(p̄π+) = 2.758 ·

10−3 GeV/c2 and σmfit
(pπ−) = 2.845 · 10−3 GeV/c2 for the Gaussian with

larger contribution to the fit. We note that the widths are approximately 3%

larger than in the IdealIP case, which is a reflection of the distorted reso-

lution. However, the difference is very small which is reassuring. The ob-

tained mass values are consistent with the PDG value of the Λ: mPDG(Λ̄) =
1115.683± 0.006 MeV/c2. Third, a mass window is defined as five standard

deviation around the PDG value of the Λ mass:

|mfit(p̄π+)−mPDG(Λ)|< 5 ·2.758 ·10−3 GeV/c2

|mfit(pπ−)−mPDG(Λ)|< 5 ·2.845 ·10−3 GeV/c2
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The Figure 12.3 shows the invariant mass distribution of both Λ and Λ̄ particles

for signal (blue) as well as the non-resonant background (black) samples. The

mass window defined above is marked with red vertical lines.

(a) (b)

Figure 12.3. The invariant mass distributions of (a) m f it( p̄π+) and (b) m f it(pπ−) of

signal (blue) and background (black) with cut value (red), scaled according Table 11.1.

12.1.2 The z f it(Λ̄)+ z f it(Λ)> 2 cm Criterion

The final criterion is is the requirement of displaced decay vertices along the

z− axis. We require z f it(Λ̄) + z f it(Λ) > 2 cm to be fulfilled. The resulting

distribution is shown in Figure 12.4 with the cut indicated as a red line.

Figure 12.4. z f it(Λ̄) + z f it(Λ) distribution of signal (blue) and non-resonant back-

ground (black) samples with the cut value (red), scaled according to Table 11.1.

The z f it(Λ̄)+ z f it(Λ) distribution is expected to differ with respect to the Ide-

alIP case due to the collisions occurring away from the nominal interaction
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point. We see from Figure 12.4 that indeed, the cut value needs to be adjusted

in order to have the desired effect given the new realistic conditions. The cut

value needs to be adjusted, which I will come back to in Subsection 12.1.4.

12.1.3 Results from the Final Selection

The final reconstruction efficiency is given in Table 12.1 for the signal as well
as the non-resonant background samples.

Table 12.1. The final reconstruction efficiency for signal as well as the non-resonant
background samples, the NormalIP case.

Channel pp̄ → Λ̄Λ → p̄π+pπ− pp̄ → p̄π+pπ−

Generated 106 106

Pre-selection 260194 292007

χ2 < 100 205461 238505

Mass cut 175180 23722.0

zΛ̄ + zΛ > 2 cm 155239 5929

Efficiency % 15.52±0.04 0.59±0.01

The final efficiency of signal sample is 15.5% which is smaller than the IdealIP

case which is 20.1%. However, the contribution of non-resonant background

is slightly higher than the IdealIP case. One can see the impact of selection

on z f it(Λ̄) + z f it(Λ) distribution (highlighted in blue in the table), which is

expected to influence the efficiencies due to decay vertex distribution along

the z-axis.

The FoM for the NormalIP case according to Equation 10.1 is given below:

FoM = 44 (12.1)

The value of FoM is 44 in this case which is almost half the value of FoM of

IdealIP case. This significant reduction in FoM is mainly due to higher con-

tribution of non-resonant background. However, one should keep in mind that

a signal-to-background ratio of 44 means that the background contamination

from non-resonant production is only 2.2%. As discussed earlier, optimizing

the selection on z f it(Λ̄)+ z f it(Λ) distribution will further improve the FoM.

12.1.4 Adjusting the z f it(Λ̄)+ z f it(Λ) Criterion

The decay vertex cut can be slightly adjusted to the point of intersection be-

tween the signal and non-resonant background distributions. This point is

located at z f it(Λ̄)+ z f it(Λ)> 2.5 cm on distribution as shown in Figure 12.5.

One can see that increasing the z f it(Λ̄)+z f it(Λ) cut to a larger value inevitably

leads to a reduced signal efficiency. However, it has the desired outcome that it

reduces the background contribution even more. The Figure 12.6 shows FoM
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Figure 12.5. The z f it(Λ̄)+ z f it(Λ) distribution of signal (blue) and non-resonant back-

ground (black) samples. The histograms are scaled according to Table 11.1. The cut

is shown with a red line on the figure.

versus z f it(Λ̄)+ z f it(Λ) for IdealIP and NormalIP cases. The cut values are

marked vertical lines at 2 cm (cyan) and 2.5 cm (magenta).

(a) (b)

Figure 12.6. The FoM v.s. z f it(Λ̄)+ z f it(Λ) for IdealIP and NormalIP cases. The old

and new cut values are marked at 2 cm (cyan) and 2.5 cm (magenta), respectively.

Here, one should note that it is customary to optimize the z f it(Λ̄)+ z f it(Λ) cut

as in Ref. [10] using the significance S/
√

S+B as the Figure-of-Merit, and

with B calculated from the DPM generator. Figure 12.7 shows the z f it(Λ̄)+
z f it(Λ) versus the signal-to-background (S/

√
S+B) for the IdealIP and the

NormalIP cases and using the non-resonant pp̄→ p̄π+pπ− as the background.

If the cuts were optimized by the generic hadronic background, e.g. by us-

ing the DPM generator, then one might see the cuts on the optimum of the
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(a) (b)

Figure 12.7. The S/
√

S+B v.s. z f it(Λ̄)+ z f it(Λ) for IdealIP and NormalIP cases. The

old and new cut values are marked at 2 cm (cyan) and 2.5 cm (magenta), respectively.

S/
√

S+B curves. However, this is not true as only the non-resonant back-

ground channel is used.
With the new cut value at 2.5 cm, the final efficiency is given in Table 12.2

for both signal and non-resonant background channels.

Table 12.2. The final efficiency for signal as well as the non-resonant background
samples for z f it(Λ̄)+ z f it(Λ)> 2.5 cm.

Channel pp̄ → Λ̄Λ → p̄π+pπ− pp̄ → p̄π+pπ−

Generated 106 106

Pre-selection 260194 292007

χ2 < 100 205461 238505

Mass cut 175180 23722.0

zΛ̄ + zΛ > 2.5 cm 152670 5173

Efficiency % 15.27±0.04 0.52±0.01

One can see that the higher values of FoM corresponds to the lower efficiencies

of signal and non-resonant background samples. There is trade-off between

FoM and the efficiencies. The FoM with the new cut value is given below:

FoM = 50 (12.2)

The FoM has risen to 50 after adjusting the cut which is approximately 14%

increase in value of FoM compared to before optimization. This corresponds

to a signal-to-background ratio of 2% for the non-resonant background.
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12.2 The NormalIP+Cryo Case

This is the second extended target case with mere difference that a cryogenic

pump, or cryopump, is employed to remove the residual gas from the beam

pipe thus improving the efficiency of the benchmark study as discussed in

previous sections. The density distribution of both target as well as residual

gas for the NormalIP+Cryo case is shown in Figure 12.8.

Figure 12.8. The target and residual gas density distribution along the beam axis. The

histogram has been divided by the bin width (due variable bin width of data generated

by the Münster Group [1]).

The cryopump is employed at 300 cm upstream of the beam pipe which visible

by dip the density distribution at z =−300 cm. Due to gas extraction from the

beam pipe, the density distribution on the left of the origin is substantially

reduced. However, the distribution doesn’t change much on the right side.

The analysis for this extend target profile is given in the following sections.

12.2.1 Invariant Mass Selection

The double Gaussian fits to the invariant mass distributions of Λ and Λ̄ par-

ticles. The fits yields the mean of μmfit
(p̄π+) = 1.116 GeV/c2, μmfit

(pπ−) =
1.116 GeV/c2 and the standard deviation of σmfit

(p̄π+) = 2.768 ·10−3 GeV/c2

and σmfit
(pπ−) = 2.833 ·10−3 for the Gaussian with larger contribution to the

fit. The double Gaussian fits are shown in Figure 12.9.

The mass window is defined as five standard deviation around mPDG(Λ)
which, similarly to NormalIP, is about 3% larger compared to the IdealIP case:

|mfit(p̄π+)−mPDG(Λ)|< 5 ·2.768×10−3 GeV/c2

|mfit(pπ−)−mPDG(Λ)|< 5 ·2.833×10−3 GeV/c2
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(a) (b)

Figure 12.9. The invariant mass resolution is obtained by double Gaussian fit on the

invariant mass distributions (a) m f it(p̄π+) and (b) m f it(pπ−) for the signal sample.

The invariant mass distributions of Λ and Λ̄ along with the mass windows are

shown in Figure 12.10.

(a) (b)

Figure 12.10. The invariant mass distributions of (a) m f it( p̄π+) and (b) m f it(pπ−) of

signal (blue) and non-resonant background (black). The histograms are scaled accord-

ing Table 11.1 whereas the red lines represent the mass window.

The mass resolutions obtained in the NormalIP+Cryo case are not significantly

different from the NormalIP or the IdealIP cases. Hence the corresponding

mass windows also do not differ much from the these cases.

12.2.2 The z f it(Λ̄)+ z f it(Λ)> 2 cm Criterion

The decay vertex cut for the NormalIP+Cryo is shown in Figure 12.11 with the

cut value is marked with the red line. The signal and non-resonant background

samples are scaled according to Table 11.1. One can see that the background

events are peaked around z f it(Λ̄)+ z f it(Λ) = 0 while the signal events around
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z f it(Λ̄)+ z f it(Λ)≈ 9 cm. As in the NormalIP case, where the cryopump is not

used, the decay vertex cut can also be slightly shifted to the right of cut value,

which we will come back to in Section 12.2.4.

Figure 12.11. The z f it(Λ̄) + z f it(Λ) distribution of signal (blue) and non-resonant

background (black) samples with cut value shown with a vertical red line. The his-

tograms have been scaled according to Table 11.1.

Apparently, the z f it(Λ̄)+ z f it(Λ) distribution is similar to the NormalIP case,

as the cryopump has little effect on the residual gas away from the interaction

point as shown in the extended target profiles for both cases in Figures 12.1

and 12.8.

12.2.3 Results from the Final Selection

After applying the selection criteria, step by step, the pp̄ → Λ̄Λ reaction is

reconstructed from the final state particles for both signal and non-resonant

background samples. The final reconstruction efficiency is given in Table 12.3.

Table 12.3. The final efficiency for signal as well as the non-resonant background
samples.

Channel pp̄ → Λ̄Λ → p̄π+pπ− pp̄ → p̄π+pπ−

Generated 106 106

Pre-selection 287424 326858

χ2 < 100 227306 266872

Mass cut 193991 26611

zΛ̄ + zΛ > 2 cm 173597 6503

Efficiency % 17.36±0.05 0.65±0.01
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The FoM for this case, using Equation 10.1, is given below:

FoM = 45 (12.3)

We note that it is almost half of the FoM in the IdealIP case, while the differ-

ence is negligible when compared to NormalIP case.

12.2.4 Adjusting the z f it(Λ̄)+ z f it(Λ) Criterion

As the FoM of NormalIP and NormalIP+Cryo are not very different from one

another, one can conclude that z f it(Λ̄)+ z f it(Λ) cut can be shifted from 2 cm

to 2.5 cm. The new cut value is shown in Figure 12.12 at the intersection of

signal and background distributions.

Figure 12.12. The z f it(Λ̄) + z f it(Λ) distribution of signal (blue) and non-resonant

background (black) samples. The histograms are scaled according to Table 11.1. The

cut is shown with a red line on the figure.

The final efficiency after the new decay vertex cut defined as z f it(Λ̄)+z f it(Λ)>
2.5 cm is shown in Table 12.4.

Table 12.4. The final efficiency for signal as well as the non-resonant background
samples for z f it(Λ̄)+ z f it(Λ)> 2.5 cm.

Channel pp̄ → Λ̄Λ → p̄π+pπ− pp̄ → p̄π+pπ−

Generated 106 106

Pre-selection 287424 326858

χ2 < 100 227306 266872

Mass cut 193991 26611

zΛ̄ + zΛ > 2.5 cm 170604 5581

Efficiency % 17.06±0.04 0.56±0.01

144



As expected, the efficiencies are a little smaller than the values before adjust-

ing the decay vertex cut. The new FoM is given below:

FoM = 52 (12.4)

which implies a 16% increase in the FoM, this means that the signal-to-background

ratio will be around 1.9%. One can see that the higher FoM means the lower

efficiencies as compared to earlier case. However, the difference in FoM for

the NormalIP and NormalIP+Cryo is still very small.

12.3 Summary of Results
In this section, the results will be summarized from the all cases, including the
IdealIP. Results from both with and without adjusting the decay vertex cut are
presented in Table 12.5. The summary of results with optimized decay vertex
cut is given in Table 12.6.

Table 12.5. Summary of final efficiencies and the FoM for various target types for
signal as well as non-resonant background samples. The values corresponds to the
z f it(Λ̄)+ z f it(Λ)> 2.0 cm criterion.

Target εsig [%] εbkg [%] FoM
IdealIP 20.08±0.05 0.34±0.01 99

NormalIP 15.52±0.04 0.59±0.01 44

NormalIP+Cryo 17.36±0.05 0.65±0.01 45

Table 12.6. Summary of final efficiencies and the FoM for various target types for
signal as well as non-resonant background samples. The values corresponds to the
z f it(Λ̄)+ z f it(Λ)> 2.5 cm criterion.

Target εsig [%] εbkg [%] FoM
NormalIP 15.27±0.004 0.52±0.01 50

NormalIP+Cryo 17.06±0.004 0.56±0.01 52

One can now make a comparison between the ideal and and the two realis-

tic effective target profile scenarios. First, the FoM drops by almost 50% in

the NormalIP configuration when compared to the IdealIP case. It is signif-

icant to the extent that one can not ignore the impact of residual gas while

performing simulation studies which are by default IdealIP case. The lower

FoM indicates that the background suppression is significantly impaired, but

not to the extent that it would make studying this channel unfeasible. On the

contrary: a signal-to-background ratio of 44-52 indicates a very clean sample,

in the sense that the signal-to-background rate will be around 2%. However,

the event selection algorithm can be further optimized in order to suppress

background in the best possible way. Furthermore, the FoM is not very differ-

ent within the extended target profiles i.e. it is merely a 4% rise in the FoM
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of NormalIP+Cryo compared to the NormalIP case. Overall, the background

suppression is still very good in both cases. The cryopump does not have

significant impact downstream of the beam-pipe. However, it is beneficial in

other ways e.g. it reduces the residual gas around IP which means that there

will be fewer beam losses due to interactions with the gas. This will improve

the chances of keeping the luminosities large.
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13. Conclusions

13.1 Part II: Realistic Track Reconstruction
By applying deep learning and geometric deep learning models, I have devel-

oped a complete track reconstruction method for the STT detector. The STT

is considered one of the most crucial detectors in PANDA; see a discussion in

the beginning of Part II. The task of reconstructing particle trajectory is for-

mulated as an edge classification problem where one can leverage the ability

of neural networks. The strategy is to first reconstruct muons trajectories in

the STT by employing two different machine learning domains for edge clas-

sification. These domain are labeled as Euclidean where a DNN is used, and

non-Euclidean where a GNN is used. For sake of convenience, I used graph-

based terms for both, as one can think of Euclidean domain as a special case of

the non-Euclidean one. So each STT event is treated as a graph with nodes and

edges, where nodes are the hit positions and edges are the links between them.

Hence particle trajectories are broken down into a list of true and false edges.

A predicted event is a weighted graph where each edge has score. Next, clus-

tering algorithm such as the DBSCAN algorithm filters out edges by applying

a certain threshold on the edge score, providing us with track candidates.

My ultimate goal is to reconstruct particles with two distinct features: (i)
particles with extremely low pt and (ii) particles that originate away from the

IP. Handling both of these issues is essential to study many hadron physics

studies, in particular hyperons. I took a gradual approach to tackle both. First,

I reconstructed muon trajectories with two different deep learning models. In

the first case, a DNN is used for edge classification and then reconstructed

tracks. The tracking efficiencies (εphys., εtech.) are found to be smaller than

80%, which is not good enough for successful hadron studies. Therefore, I

employed an interaction GNN (IGNN) for edge classification. Using a GNN

has an advantage over a DNN, since it can process a full graph all at once,

whereas DNN performs edge classification on each edge in isolation. Thanks

to this feature of the IGNN, the tracking efficiencies increase by more than

10% units for every evaluation criteria (see Section 7.2 and Section 8.2). The

results demonstrate that the IGNN has an advantage over the DNN in every

respect. Therefore, it is chosen for further analysis.

Finally, final state particles from the pp̄ → Λ̄Λ → p̄π+pπ− are recon-

structed using geometric deep learning. The same strategy as for the IGNN

reconstruction with muons, is employed to reconstruct final state hadrons from

this reaction. The tracking efficiencies are found to be ≥ 90% for the evalu-

ation criteria used in Section 9.3. Look at the low pt particles; our method
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works as low as pt ∼ 0.05 GeV/c for pions and pt ∼ 0.1 GeV/c protons. I also

investigated the ability of our method to reconstruct tracks away from the IP. I

found that my method works well for the full range of radial vertex distances

d0 that I investigated, i.e at least up to 14 cm. This is an important result

since we expect other hyperons such as Ξ− and Ω− decaying through inter-

mediate Λ hyperons, will have Λ decay vertices mostly less than 15 cm in the

radial direction from the IP [18]. Hence our approach using IGNN has proved

promising for hadron physics studies. Slight modifications in our approach

can produce even better results, as discussed under outlook (Chapter 14). Es-

pecially interesting is to see whether this can reduce the clone rates.

13.2 Part III: Hyperon Simulations with Realistic Target
Profiles

The strategy adopted in this part of the thesis is to first thoroughly study the

pp̄ → Λ̄Λ → p̄π+pπ− reaction (i.e. Chapter 11). The approach was the same

as in Ref. [10], which enabled a comparison between an old and a new version

of the PandaRoot software. With the new version, the global reconstruction

efficiency has significantly improved from 16.10± 0.04% to 20.1± 0.05%.

However, the efficiency for the non-resonant background has increased from

0.048± 0.002% to 0.344± 0.006%. This matter is under investigation that

what new features in PandaRoot have caused this change?

Until now, all physics analyses within PANDA have been studied under

ideal target conditions, i.e. assuming the beam-target interaction to be con-

fined to one point in space. In this work, we have also investigated effects of

gas dissipation from the target into the beam pipe. The gas act as an effective

target that is substantially extended in space, hence resulting in a large beam-

target interaction volume. By studying the non-resonant pp̄ → p̄π+pπ− in

parallel to the pp̄ → Λ̄Λ → p̄π+pπ−, we learn how efficiently we can sup-

press background with ideal and realistic target conditions. This calls for a

fine-tuning of the selection criteria, in particular the vertex position cut that

has been adjusted in order to improve the signal-to-background ratio in this

work.

It was found that the selection procedure, adopted for exclusive reconstruc-

tion of pp̄ → Λ̄Λ → p̄π+pπ−, was highly effective in suppressing the non-

resonant background. This is also the case when we perform the simulations

with a realistic target profile: although the signal-to-background ratio is re-

duced by about a factor of two, the background is still only around 2%. By

tuning the selection criteria, this can be further improved.

Two extended target scenarios were studied: one with the default pumping

system, and one with an additional cryopump. The results do not differ much

between these two scenarios; the main asset of using the cryopump is instead

to preserve good beam conditions. In the near future, it is expected that vac-
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uum conditions in the beam-pipe near the target will further improve, since

extensive developments are ongoing in the cluster-jet target group at the Uni-

versity of Münster. It is expected that this will further improve the capability

to suppress the background of the hyperon production channels.
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14. Outlook

14.1 Part II: Realistic Track Reconstruction

After demonstrating the ability of machine learning in reconstructing final

state particles that have secondary decay vertices in the STT, I will now discuss

the next steps towards a more complete tracking framework for PANDA. The

performance can be improved in several ways. First, adding more detectors

such as the MVD and the GEM implies more data for the GNN, which should

improve the performance. This is part of ongoing work on a heterogeneous

setup where not only the data from detectors are heterogeneous, but also the

deep learning pipeline uses heterogeneous neural networks. The work with

this pipeline is not yet completed, hence results from this work will instead be

presented in the future.

A second way to improve the performance is to implement a better ground

truth heuristic designed specifically for low pt tracks. Due to ambiguous

ground truth for such tracks, it is suspected that true edges are labeled as fake

ones. Hence a better ground truth will improve the tracking efficiencies. I

have developed a heuristic method that can solve this problem. For exam-

ple, Figure 14.1 shows the difference between the current and new methods to

generate ground truth, especially for curly tracks.

(a) Current Ground Truth (b) Future Ground Truth

Figure 14.1. Current (left) and future (right) heuristic method to build ground truth

for input graphs. The figures shows muon data from Chapter 8.
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Our current method works poorly for low pt tracks especially those that

curl back towards the IP. To account for this problem, one needs to follow

along the particle trajectory while generating ground truth information. This

can be achieved in several ways. For example, the timing of hits can be used.

However, in the STT, the time resolution is poor and as a result, one can not

exploit this option. However, in many other, faster detectors such as the MVD,

this could be viable. One can also use radial distance of the hits from the IP,

but that fails for curly tracks. The third option is to use order-of-occurrence of

hits in a particle trajectory. We have found that, for each particle, such an order

exists in our data. However, one needs to thoroughly investigate if this order is

indeed true for all events. This method is used to create a better ground truth

for low pt tracks, see the left panel in Figure 14.1.

Developing a better track formation algorithm is the fourth way to improve

our performance. In this thesis, tracks are built using connected-components

(CC) algorithm1. By design, the CC algorithm breaks intersecting tracks into

multiple sub-tracks. One drawback of these algorithms is the high clone rate

caused by low pt intersecting tracks. To handle this situation, one might opt

for a different method for this purpose. For example, a path-finding algorithm

named Walkthrough is developed by the Exa.TrkX collaboration [155] as an

alternative to connected components. At present, also this method has difficul-

ties with intersecting tracks. The Walkthrough can however easily be adapted

to account for handling intersecting tracks. Due to the combinatorial way of

track building, this algorithm is slow. One way to speed up the track formation

is to create a hybrid solution where the Walkthrough algorithm runs succes-

sively after the CC. First, run CC on the data with a low cut on the edge score

allowing intersecting tracks to form single components. After that, one can

run the Walkthrough on each component the CC generates. The successive

operation of both algorithms is expected to increase our tracking efficiencies.

This work is currently under development and may be tested in the future to

see its effectiveness.

14.2 Part III: Hyperon Simulations with Realistic Target
Profiles

In PANDA, the analysis with an extended target is the first physics study per-

formed with the realistic target profiles i.e. including the residual gas. The tar-

get scenarios are under constant development, especially the NormalIP+Cryo.

The study performed in this report will provide useful insight concerning the

impact of different vacuum scenarios on the physics analysis. Furthermore,

this study can serve as a template for other physics channels to understand

1CC ∼ DBSCAN and CCL
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how the realistic conditions might affect the results of the corresponding sim-

ulation studies done in other groups.

In the analysis presented here, the interaction point was assumed to be at

(0,0,0) also in the case of realistic target profiles. This is of course only

approximately true. An alternative approach is to study whether the primary

interaction vertex can be reconstructed by the point of closest approach of the

Λ and the Λ̄ candidates. A better-known interaction point should yield a more

powerful vertex displacement cut.
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15. Summary in Swedish

PANDA är ett framtida experiment som håller på att byggas i Darmstadt i

Tyskland. Experimentet har designats för detaljerade studier av hadroner -

sammansatta partiklar som binds samman av stark växelverkan. De vanligaste

och mest välkända hadronerna är protoner och neutroner, som består av lätta

upp- och nedkvarkar. Anta att en partikel består av två lätta kvarkar och en

tung och instabil särkvark. En sådan partikel kallas hyperon. Den lättaste

av dessa är Λ-hyperonen – och de tyngre Σ,Ξ och Ω−. Λ-hyperonen kan

betraktas som tyngre syskon till protonen och neutronen eftersom de liknar

varandra, men har något olika massa.

Denna avhandling är ett steg på vägen mot att uppnå realistiska simuleringar

respektive dataanalys med PANDA. Under utvecklingsfasen av PANDA utförs

olika studier, t.ex. hur hyperoner produceras och detekteras, under idealiska

förhållanden. En fördel med dessa är att man kan fokusera på just det man

vill undersöka utan att oroa sig för eventuella olägenheter som kan uppstå på

grund av bristande perfektion i mjukvara eller apparatur. I praktiken måste

man dock utföra dessa studier med data som producerats under de förhållan-

den som faktiskt gäller i det verkliga experimentet. Ett exempel på detta är

processen att rekonstruera partiklarnas spår genom detektorn. Därför måste

de experimentella förhållanden som man ”härmar” i simuleringarna ligga så

nära det verkliga experimentet som det bara är möjligt.

I den här avhandlingen har jag fokuserat på två huvudsakliga ämnen. För

det första har jag utvecklat ett förfarande baserat på maskininlärning som

rekonstruerar partikelspår. För det andra har jag undersökt vilka effekter re-

alistiska vakuumförhållanden har på fysiksimuleringarna. Låt oss dyka ner i

båda dessa utmaningar, var för sig, och diskutera dem i detalj.

Processen att rekonstruera partikelbanor är ett av de kritiska stegen i kedjan

för dataanalys från ett experiment av denna typ. När en kollision äger rum

i en detektor flödar partiklarna ut från kollisionspunkten mellan strålen och

strålmålet. Partiklarna passerar genom olika detektordelar där de växelverkar

och därmed avger signaler i form av pulser - så kallade partikelträffar, eller

bara träffar. Det finns två olika kategorier av partikelspår som kan uppstå från

en kollision. För det första finns spår som börjar exakt där kollisionen in-

träffade, så kallade primära spår. För det andra finns spår som bildas när en

primär, men instabil, partikel sönderfaller till dotterpartiklar, som i sin tur läm-

nar signaler i detektorn. Vi kallar den punkt där ett spår börjar för vertex. När

man rekonstruerar spår grupperar man partikelträffar så att man kan följa par-

tikelns bana genom detektorn. Från partikelbanan kan man sedan bestämma
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de kinematiska egenskaperna hos en laddad partikel, såsom dess position och

rörelsemängd. Sekundära spår är en utmaning eftersom ursprungsvertex inte

har något bestämt läge, utan varierar mellan olika reaktioner. Fysikstudier

vid PANDA sker vid ganska låga energier jämfört med till exempel LHC vid

CERN. Detta resulterar i lågenergispår från strålens och strålmålets kollision-

spunkt, men också från sönderfallspunkten, och dessa spår är komplicerade att

rekonstruera.

Det finns många algoritmer för att rekonstruera spåren. Det är dock inte

alla som uppfyller de särskilda behoven för ett hadronfysikexperiment som

PANDA. Vissa algoritmer är till exempel bra på att rekonstruera primära spår,

men inte sekundära, medan det för andra kan vara tvärtom. Vissa presterar

bättre när det finns relativt få spår, men presterar dåligt när man behandlar ett

stort antal spår. De flesta har svårigheter att rekonstruera spiralformade spår.

De särskilda egenskaperna hos PANDA-experimentet kräver således att man

utforskar nya tekniker som kan uppfylla de speciella behov som uppstår till

följd av experimentets utmanande egenskaper. Jag har utforskat en lösning

inom området maskininlärning.

Den lösning jag har utvärderat närmare är en mjukvaruimplementation av

den så kallade Straw Tube Tracker (STT)-detektorn, eller strådetektorn, och

de träffar som bildas inuti den. För att kombinera dessa träffar till spår har

jag använt mig av maskininlärningstekniker. Här betraktas spåren som grafer

med noder och kanter. Träffpositionerna utgör noder, medan kanter binder

samman träffpositioner. En länk anses vara sann om två noder bildar ett spår

och falsk om de inte gör det. Kanterna skapas med hjälp av ett kombinatoriskt

tillvägagångssätt som omfattar alla möjliga tolkningar. Nu är huvuduppgiften

att avgöra vilka kanter som är sanna och vilka som är falska. För detta ändamål

kan vi antingen använda några komplicerade matematiska operationer eller

maskininlärning.

I min avhandling använder jag neurala nätverk för att förutsäga vilka kan-

tkombinationer som är sanna respektive falska. Eftersom det är omöjligt att

exakt avgöra detta, kommer det neurala nätverket att tilldela varje kant en viss

sannolikhet. Där slutar maskininlärningsalgoritmen sitt arbete och nästa steg

tar vid. Jag har använt två olika nätverk. Det första kan behandla alla noder

och kanter samtidigt och kallas Graph Neural Network (GNN). Det andra,

som endast behandlar med kanterna var för sig, kallas Dense Neural Network

(DNN). När kanterna förutsägs med en viss sannolikhet kan man sedan an-

vända en klustringsalgoritm för att gruppera identifierade kanter till spår, som

i sin tur motsvarar partiklar.

För att se hur väl de båda modellerna kan fungera har jag jämfört spårn-

ingseffektiviteten för de båda nätverken. Spårningseffektiviteten är förhållan-

det mellan antalet rekonstruerade spår och det totala antalet genererade spår.

I simuleringar med elektromagnetiskt växelverkande myonpartiklar fann jag

att GNN ger en betydligt bättre spårningseffektivitet jämfört med DNN. Detta

beror på att GNN bearbetar en hel graf på en gång och därför kan lära sig
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förhållandet mellan noderna bättre än DNN, som bara ser ett segment av hel-

heten i taget. Motiverad av GNN:s höga effektivitet ville jag också undersöka

hur GNN fungerar för starkt växelverkande hadroner, i synnerhet hyperoner.

Jag använde därför samma analysförfarande för hyperoner av typen Λ som

produceras i proton-antiproton-annihilationer och som sönderfaller till pioner

och protoner. Eftersom Λ-hyperonerna är neutrala är det bara deras sönder-

fallsprodukter, det vill säga protonerna och pionerna, som syns i detektorn.

I detta fall uppstår två utmaningar: (i) spåren, särskilt pionernas banor, blir

starkt krökta i PANDA-detektorns magnetfält, (ii) sönderfallsprodukternas ur-

sprungsvertex befinner sig flera centimeter eller till och med decimeter från

kollisionspunkten. Dessa båda problem har tidigare varit stötestenar för många

algoritmer. I mitt fall fann jag dock att genom att rekonstruera protoner och

pioner med hjälp av GNN så är spårningseffektiviteten nästan lika hög som

i fallet med myonerna. Viktigast av allt är GNNs förmåga att rekonstruera

lågenergipartiklar. Därför är mitt förfarande en lovande väg framåt för både

myoner och hadroner. Metoden kan anses vara en lämplig kandidat för att

rekonstruera många hadroniska reaktioner där andra går bet.

I den sista delen av min avhandling undersökte jag vilka effekter restgas har

på hyperonrekonstruktionen. Simuleringsstudier utförs främst genom att man

antar att strålmålet är punktformigt. Detta innebär att kollisionspunkten mel-

lan stråle och strålmål kan anses vara oändligt väl lokaliserad, alltså idealisk.

I detta fall är kinematiken hos partiklarna som bildats relativt enkel att rekon-

struera med god noggrannhet. I det verkliga experimentet kommer vi dock

att ha restgas som bildats när stråle och mål växelverkar och som läcker ut i

strålröret. Detta måste beaktas i fysiksimuleringar. Genom att simulera effek-

terna av restgasen inuti strålröret får vi en växelverkansvolym mellan stråle

och strålmål i stället för en växelverkanspunkt. Detta förvränger de rekon-

struerade partikelegenskaperna.

För att undersöka effekterna av restgasen har jag simulerat Λ hyperonpro-

duktion med ett scenario för idealiskt vakuum (d.v.s. en växelverkanspunkt)

och två realistiska scenarier (d.v.s. med växelverkansvolymer). Varför kan

man inte få bort den kvarvarande gasen? Ett av scenarierna innehåller faktiskt

ett sådant försök: en kryopump som ska avlägsna restgasen. Kryopumpen är

dock inte perfekt och därför kommer vi fortfarande att ha kvar en del restgas

i strålröret. Sammantaget finns det alltså tre scenarier: idealiskt mål (IdealIP),

en utökad målvolym (NormalIP) och en minskad målvolym tack vare kryop-

umpen (NormalIP+Cryo). Jag har jämfört resultaten från alla tre scenarierna

med ett enhetligt analysförfarande.

För att angripa detta problem analyserar jag återigen Λ-hyperoner som pro-

duceras i annihilationer mellan antiprotonstrålen och vätestrålmålet. Den här

gången tar jag också hänsyn till att hyperonerna sönderfaller till protoner och

pioner, som jag redan har nämnt. Vår reaktion sker i två steg: det inledande

tillståndet, där proton och antiproton annihilerar varandra och bildar hyper-

oner, och det slutliga tillståndet, där protoner och pioner bildas i hyperon-
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sönderfallen. Nu behöver vi bara identifiera och mäta protonerna och pio-

nerna och sedan rekonstruera vår reaktions initialtillstånd. Vi upprepar vårt

förfarande för alla tre ovan nämnda scenarier och definierar ett meritvärde

(FoM) som kvantifierar hur restgasen påverkar vår förmåga att identifiera den

intressanta reaktionen samtidigt som vi avlägsnar bakgrunden. FoM för Ide-

alIP, NormalIP och NormalIP+Cryo beräknas till 99, 44 respektive 45. FoM

för de realistiska fallen sjunker alltså med en faktor på hälften jämfört med

idealfallet. Vi noterar också att den totala rekonstruktionseffektiviteten för

hyperoner sjunker från 20,1% till 15,5% respektive 17,34%. Även om rest-

gasen har en inverkan på effektiviteten är det inte en drastisk effekt. Därför är

det fortfarande möjligt att studera hyperoner i PANDA, även under realistiska

vakuumförhållanden.
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A. Hyperon Analysis

A.1 Efficiency and Uncertainties

The global reconstruction efficiency is defined as the following:

ε =
nrec

ngen

where nrec are the reconstructed events and ngen are total generated events. It

is assumed that the number of signal events are Poisson distributed, so uncer-

tainties on number of total generated events and reconstructed events are given

as:

σ(nrec) =
√

nrec

σ(ngen) =
√

ngen

The uncertainty of efficiency is given by the following error propagation equa-

tion:

σε =

√(
∂ε

∂nrec

)2

σ(nrec)2 +

(
∂ε

∂ngen

)2

σ(ngen)2

σε =

√
nrec

n2
gen

+
n2

rec

n3
gen

A.2 Software Versions

For performing hyperon analysis, the following software versions are used:

• FairSoft: �������

• FairRoot: ���	
	�

• PandaRoot: ���	�	�
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B. Deep Learning

The superscript "(i)" will denote the ith training example while superscript

"[l]" will denote the lth layer.

B.1 Notations

Neural network parameters are divided into three categories: (i) Network Ar-
chitecture, (ii) Network IO, and (iii) Network State. The first two categories

are collectively called hyperparameters i.e. there is no standard way to chose

them. However, to make a sensible choice, one needs to perform hyperparam-
eter tuning. The last set of parameters defines the state of a network, whose

values are learned and improved over time during the network training. The

indices and dimensions of these parameters are listed as follows:

Parameters – Network Architecture
• nx: input size

• ny: output size (or number of classes)

• n[l]h : number of hidden units of the lth layer, n[0]h ≡ nx and n[L]h ≡ ny
• L: number of layers in the network

Parameters – Network IO
• m: number of examples in the dataset

• X ∈ R
nx×m is the input matrix, x(i) ∈ R

nx is the ith input example rep-

resented as a column vector

• Y ∈ R
ny×m is the label matrix, y(i) ∈ R

ny is the output label for the ith

example

• a[l] ∈R
n[l]n is output vector of all nodes in lth layer, a[l]j = g[l](∑k w[l]

jka[l−1]
k +

b[l]j ) is the output of each node in a layer where g[l] is the activation

function and W [l],b[l] are state parameters attached to each node

• ŷ ∈ R
ny is the predicted output vector. It can also be denoted a a[L]

where L is the number of layers in the network.

The state parameters are the weight (W ) and biases (b) attached to each con-

nection of a network node. There dimensions are given as follows:
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Parameters – Network State
• W [l] ∈ R

n[next]×n[previous]
is the weight matrix, where n[next] and n[previous]

are number of nodes in the next and previous layers, respectively

• b[l] ∈ R
n[next]

is the bias vector in the lth layer

State parameters, W and b, are collectively refered to as θ ≡W,b.

B.2 Data Vectorization
Every example in a dataset is represented in the form vectors as input vec-

tor x := (x1,x2, ...,xnx)
T , output vector of hidden nodes in layer l as a[l] :=

(a[l]1 ,a[l]2 , ...,a[l]
n[l]h

)T and output vector y := (y1,y2, ...,yny)
T .

For simplicity, the training index (i) is stripped off from both weight and bias

vectors: so W [l](i) ∼W [l] and b[l](i) ∼ b[l].

W [l]
jk =

⎡
⎢⎢⎢⎣

w11 w12 · · · w1k

w21
. . .

...
...

. . .
...

w j1 · · · · · · w jk

⎤
⎥⎥⎥⎦ , b[l]j =

⎡
⎢⎢⎢⎣

b1

b2
...

bny

⎤
⎥⎥⎥⎦

where the dimensions of W [l] are denoted by j = n[l]h and k = n[l−1]
h .

Each example (i) in a dataset can be represented as vectors x(i),a[l](i) and y(i):

x(i) =

⎡
⎢⎢⎢⎢⎣

x(i)1

x(i)2
...

x(i)nx

⎤
⎥⎥⎥⎥⎦ , a[l](i) =

⎡
⎢⎢⎢⎢⎣

a[l](i)1

a[l](i)2
...

a[l](i)nh

⎤
⎥⎥⎥⎥⎦ , y(i) =

⎡
⎢⎢⎢⎢⎣

y(i)1

y(i)2
...

y(i)ny

⎤
⎥⎥⎥⎥⎦

The full dataset can be represented as tabular form by matrices X ,A[l] and Y :

X =

⎡
⎣ | | |

x(1) · · · x(m)

| | |

⎤
⎦ , A[l] =

⎡
⎣ | | |

a[l](1) · · · a[l](m)

| | |

⎤
⎦ , Y =

⎡
⎢⎣

y(1)
...

y(m)

⎤
⎥⎦

The forward propagation equation in matrix form are given as follows:

Z[l] =W [l]A[l−1] +b[l]

A[l] = g[l](Z[l]) (B.1)

Ŷ = A[L]
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where input X ≡ A[l=0] for null layer and Ŷ = A[l=L] output of final layer, and

it is an estimate of the target value Y .

B.3 Speeding up Network Training
To speed up network training, several techniques are available: (i) weight ini-

tialization, (ii) input normalization, and (iii) activation normalization. These

techniques are explained briefly in the following.

B.3.1 Parameter Initialization

It is crucial to consider the initial or starting values of network parameters

w[l]
jk and b[l]j which are often randomly or zero initialized. In many cases, such

initialization may hinder the convergence of neural network. Initialing these

parameters with reasonable values will help a neural network converge faster

to find the global minimum.

There are many suggestions found in the literature to initialize these param-

eters which depends upon the type of activation function used. If the activation

function is Tanh or Sigmoid then Xavier initialization is recommended [124].

W [l]
Xavier ∼ N

(
μ = 0,σ 2 =

1

n[l−1]

)
(B.2)

b[l]Xavier = 0 (B.3)

All the weights in a layer l are initialize randomly from normal distribution

with μ = 0, and σ2 = 1
n[l−1] where n[l −1] are number of neurons in layer

l − 1. Another variant of Xavier initialization is where the variance is the

harmonic mean of 1/n[l−1] and 1/n[l−1].

W [l]
Xavier ∼ N

(
μ = 0,σ 2 =

2

n[l−1] +n[l]

)
(B.4)

b[l]Xavier = 0 (B.5)

If ReLU is used as activation function, for example, a common initialization

is He initialization [125] in which the weights are initialized by multiplying

variance of the Xavier initialization by a factor of 2.

W [l]
He ∼ N (μ = 0,σ2 =

2

n[l−1]
) (B.6)

b[l]He = 0 (B.7)

The discussion on justification on why the Xavier and He initialization is better

than the random initialization can be found in Ref. [180].
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B.3.2 Input Normalization

It is a common practice to preprocess data before training a network. Prepro-

cessing includes normalization and standardization of features. Which means

all variables transform to a common scale. This important if the features are

different from each other. In normalization, features are often rescaled into a

range [0,1] or [−1,1] (zero-centered). In case of standardization, the features

are rescaled to a mean of 0 and a standard deviation of 1.

xnorm. =
x− xmin

xmax − xmin
(B.8)

xstand. =
x−μ

σ
∼ x−μ√

σ2 + ε
(B.9)

where μ is the mean, σ is the standard deviation of the input variable x. The ε
is used to avoid dividing by zero. Normalizing the input using standard normal

distribution is often called standardization of data. One should be careful in

scaling features, as both methods mentioned above of rescaling features are

prone to outliers.

B.3.3 Activation Normalization

In activation normalization, either Batch Normalization (BatchNorm) [181] or

Layer Normalization (LayerNorm) [182] are used.

In BatchNorm, first, the activations of a batch of inputs are normalized for

each feature map by calculating the mean and standard deviation of the ac-

tivations. Second, the activations are normalized using these statistics. The

BatchNorm helps to reduce the effect of internal covariate shift, that occur

due to the change in the distribution of inputs to a layer during training. In

LayerNorm, however, inputs are normalized by adjusting and scaling the ac-

tivations of all inputs for each feature map. It first calculates the mean and

standard deviation of the activations across all inputs in a feature map, then

normalizes the activations based on these statistics.

166



References

[1] A. Khoukaz, Residual Gas from PANDA Targets, Talk at PANDA

Collaboration Meeting (2021)

[2] PANDA Collaboration, Physics Performance Report for PANDA: Strong
Interaction Studies with Antiprotons, PANDA Physics Book (2009),

arXiv:0903.3905 [hep-ex]

[3] M. Srednicki, Quantum Field Theory, Cambridge University Press (2007)

[4] MissMJ and Cush, Standard Model of Elementary Particles, Wikimedia

Images: SMPP, Accessed: 2022-10-1

[5] P.A. Zyla et al., Particle Data Group, Prog. Theor. Exp. Phys. 2020, 083C01

(2020) and (2021) update

[6] M. Gell-Mann, The Eightfold Way: a Theory of Strong Interaction Symmetry
(1961), doi: 10.2172/4008239

[7] Y. Ne’eman, Derivation of Strong Interactions From a Gauge Invariance,

Nuclear Physics, 26-2, 222–229 (1961), doi: 10.1016/0029-5582(61)90134-1

[8] E2m and Stannered, Meson Nonet and Baryon Octet, Wikimedia images:

Nonet and Octet, Accessed: 2022-10-1

[9] E. Thomé, Multi Strange and Charmed Antihyperon-Hyperon Physics for
PANDA, PhD-Thesis, Uppsala Universitet, Sweden (2012)

[10] W. Ikegami Andersson, Exploring the Merits and Challenges of Hyperon
Physics: with PANDA at FAIR, PhD thesis, Uppsala Universitet, Uppsala

(2020)

[11] G. Barucca et al., PANDA Phase One, Eur. Phys. J. A, 57-184 (2021), doi:

10.1140/epja/s10050-021-00475-y

[12] L. Fabbietti and L. Tolos, Strangeness in Nuclei and Neutron Stars, Prog. Part.

Nucl. Phys. 112, 103770 (2020), doi: 10.1016/j.ppnp.2020.103770

[13] L. Canetti et al. Matter and Antimatter in the Universe, New J. Phys. 14,

095012 (2012)

[14] T. Johansson, Antihyperon-hyperon production in antiproton-proton collisions,

Proceedings of 8th Int. Conf. on Low Energy Antiproton Physics 95 (2003)

[15] E. Klempt et al. Antinucleon - Nucleon Interaction at Low Energy: Scattering
and Protonium, Physics Reports 368 119-316 (2002).

[16] P. D. Barnes et al. Observables in High Statistics Measurements of the
Reaction p̄p → Λ̄Λ, Phys. Rev. C, 54, 1877–1886 (1996)

[17] S. Grape, Studies of PWO Crystals and Simulations of the p̄p → Λ̄Λ, Λ̄Ξ0

Reactions for the PANDA Experiment, PhD Thesis, Uppsala University,

Uppsala (2009)

[18] J. Regina, Time for Hyperons : Development of Software Tools for
Reconstructing Hyperons at PANDA and HADES, Doctoral Thesis, Uppsala

University, Uppsala (2021)

167



[19] W. Esmail, Deep Learning For Track Finding and the Reconstruction of
Excited Hyperons n Proton Induced Reactions, Doctoral Thesis,

Ruhr-Universität Bochum, Bochum (2021)

[20] H. Gutbrod, FAIR Baseline Technical Report - Volume 1 Executive Summary,

GSI, Darmstadt, (2006)

[21] H. Gutbrod, FAIR Baseline Technical Report - Volume 2 Accelerator and
Scientific Infrastructure, GSI, Darmstadt, (2006)

[22] Heuer et al., First Science and Staging Review of the FAIR Project (2022)

[23] PANDA Collaboration, Strong Interaction Studies with Antiprotons, Physics

Performance Report for PANDA, (2009), arXiv:0903.3905 [hep-ex]

[24] C.F. Perdrisat and V. Punjabi and M. Vanderhaeghen, Nucleon Electromagnetic
Form Factors, Prog.Part.Nucl.Phys., 59, 694–764 (2007), doi:

10.1016/j.ppnp.2007.05.001

[25] B. Singh et al., Feasibility studies of time-like proton electromagnetic form
factors at PANDA at FAIR, Eur. Phys. J. A 52, 325 (2016), doi:

10.1140/epja/i2016-16325-5

[26] PANDA Collaboration, Feasibility studies for the measurement of time-like
proton electromagnetic form factors from p̄p → μ+μ− at PANDA at FAIR,

arXiv:2006.16363 [hep-ex]

[27] G. Barucca et al. The Potential of Λ and Ξ− Studies with PANDA at FAIR, Eur.

Phys. J. A 57, 154 (2021). doi: 10.1140/epja/s10050-021-00386-y

[28] M. Ablikim et al. (BESIII Collaboration), Complete Measurement of the Λ
Electromagnetic Form Factors, Phys. Rev. Lett., 123, 122003 (2019), doi:

10.1103/PhysRevLett.123.122003

[29] G. Barucca et al., Study of excited Ξ baryons with the PANDA detector, Eur.

Phys. J. A 57, 149 (2021). doi: 10.1140/epja/s10050-021-00444-5

[30] N. Brambilla et al., The XYZ States: Experimental and Theoretical Status and
Perspectives, Physics Reports, 873, 1–154 (2020), doi:

10.1016/j.physrep.2020.05.001

[31] S. K. Choi et al. (Belle Collaboration), Observation of a Narrow
Charmoniumlike State in Exclusive B± → K±π+π−J/ψ Decays, Phys. Rev.

Lett, 91, 262001 (2003), doi: 10.1103/PhysRevLett.91.262001

[32] G. Barucca et al. (PANDA Collaboration), Precision Resonance Energy Scans
with the PANDA Experiment at FAIR, Eur. Phys. J. A 55, 42 (2019) doi:

10.1140/epja/i2019-12718-2

[33] B. Sing et al. (PANDA Collaboration), Study of Doubly Strange Systems using
Stored Antiprotons, Nuclear Physics A, 954, 323–340 (2016), doi:

10.1016/j.nuclphysa.2016.05.014

[34] PANDA Collaboration, Technical Design Report for the PANDA Solenoid and
Dipole Spectrometer Magnets (2009), arXiv:0907.0169 [physics.ins-det]

[35] PANDA Collaboration, Technical Design Report for the: PANDA Micro Vertex
Detector (2012), arXiv:1207.6581 [physics.ins-det]

[36] F. Sauli, GEM: A New Concept for Electron Amplification in Gas Detectors,

Nuclear Instruments and Methods in Physics Research Section A, Volume 386,

531–534 (1997), doi: 10.1016/S0168-9002(96)01172-2

[37] Deutsches Elektronen-Synchrotron (DESY), Gas Electron Multipliers
(GEMs),https://flc.desy.de/tpc/basics/gem/index_eng.html, [Online; Accessed

168



March-15-2023]

[38] B. Voss, R. Karabowicz, GEM Tracker,

https://panda.gsi.de/article/gem-tracker, [Online; Accessed 19-March-2023]

[39] The PANDA Collaboration, Technical Design Report for the PANDA
(AntiProton Annihilations at Darmstadt) Straw Tube Tracker, Eur. Phys. J. A,

49, 25 (2013)

[40] D. Steinschaden, Optimization Studies and Performance Simulations for the
Time-of-Flight System of PANDA, PhD Thesis, Technische Universität Wien,

Fakultät für Physik, Vienna (2018)

[41] PANDA Collaboration, Technical Design Report for the PANDA Barrel
Time-of-Flight (2018)

[42] PANDA Collaboration, Technical Design Report for the PANDA Barrel DIRC
Detector (2019), arXiv:1710.00684 [physics.ins-det]

[43] PANDA Collaboration, Technical Design Report for the PANDA Endcap Disc
DIRC (2019), arXiv:1912.12638 [physics.ins-det]

[44] PANDA Collaboration, Technical Design Report for the PANDA Muon System
(2021)

[45] PANDA Collaboration, Technical Design Report for the PANDA
Electromagnetic Calorimeter (EMC) (2008), arXiv:0810.1216

[physics.ins-det]

[46] B. Hommels, The LHCb Outer Tracker, Nuclear Instruments and Methods in

Physics Research Section A: Accelerators, Spectrometers, Detectors and

Associated Equipment, 462, 278–284 (2001), doi:

10.1016/S0168-9002(01)00125-5

[47] PANDA Collaboration, Technical Design Report for the PANDA Forward
Tracker (2012)

[48] PANDA Collaboration, Technical Design Report for the PANDA Forward Time
of Flight (2018)

[49] PANDA Collaboration, Technical Design Report for the PANDA Forward
Spectrometer Calorimeter (2017), arXiv:1704.02713 [physics.ins-det]

[50] PANDA Collaboration, Technical Design Report for the PANDA Luminosity
Detector (2015)

[51] PANDA Collaboration, Technical Design Report for the PANDA Internal
Targets (2012)

[52] A. Akram, Towards a Realistic Hyperon Reconstruction with PANDA at FAIR,

Licentiate Thesis, Uppsala University, Uppsala (2021)

[53] M. Al-Turany et al. The FairRoot Framework, J. Phys. Conf. Ser. 396, 022001

(2012)

[54] S. Spataro et al. The PandaRoot Framework for Simulation, Reconstruction
and Analysis, J. Phys. Conf. Ser. 331, 032031 (2011)

[55] R. Brun and F. Rademakers, ROOT: An Object Oriented Data Analysis
Framework, Nucl. Instrum. Meth. A 389, 81–86 (1997)

[56] A. Ryd et al. EvtGen: A Monte Carlo Generator for B-Physics,

EVTGEN-V00-11-07 (2005)

[57] H. Petersen and M. Bleicher and S. A. Bass and H. Stocker, UrQMD v2.3:
Changes and Comparisons (2008), arXiv:0805.0567 [hep-ph]

169



[58] T. Sjöstrand et al. An Introduction to PYTHIA 8.2, Comput. Phys. Commun.,

191, 159–177 (2015)

[59] H. Pi, An Event Generator for Interactions Between Hadrons and Nuclei:
FRITIOF version 7.0, Comput. Phys. Commun., 71, 173–192 (1992)

[60] S. Agostinelli et al. GEANT4–A simulation Toolkit, Nucl. Instrum. Meth. A

506, 250–303 (2003)

[61] R. Frühwirth, Application of Kalman Filtering to Track and Vertex Fitting,

Nucl. Instrum. Meth. A 262, 444–450 (1987)

[62] S. Spataro, Event Reconstruction in the PandaRoot Framework, J. Phys. Conf.

Ser. 396, 022048 (2012)

[63] J. Therhaag, TMVA Toolkit for Multivariate Data Analysis in Root, 35th

International Conference on High Energy Physics, (2010), doi:

10.22323/1.120.0510

[64] A. Paszke et al., PyTorch: An Imperative Style, High-Performance Deep
Learning Library, Advances in Neural Information Processing Systems 32,

8024–8035 (2019)

[65] M. Abadi et al., TensorFlow: Large-Scale Machine Learning on
Heterogeneous Systems, Online Paper (2015)

[66] M. Hansroul and H. Jeremie, and D. Savard, Fast Circle Fit With the
Conformal Mapping Method, CERN-DD/88/20 (1988)

[67] P.V.C. Hough, Machine Analysis of Bubble Chamber Pictures, Conf. Proc. C,

590914, 554–558 (1959)

[68] P.V.C. Hough, Method and Means for Recognizing Complex Patterns, Patent,

United States (1962)

[69] Alexopoulos et al., Implementation of the Legendre Transform for Track
Segment Reconstruction in Drift Tube Chambers, Nucl. Instrum. Meth. A, 592,

456–462 (2008)

[70] A. Glazov et al., Filtering Tracks in Discrete Detectors Using a Cellular
Automaton, 329, 262–268 (1993)

[71] I. Kisel et al., Cellular Automaton and Elastic Net for Event Reconstruction in
the Nemo-2 Experiment, Nucl. Instrum. Methods Phys. Res. A, 387, 433–442

(1997)

[72] J. Hertz et al., Introduction to the Theory of Neural Computation,

Addison-Wesley Publishing Company (1991)

[73] A. Strandlie, and R. Frühwirth, Track and Vertex Reconstruction: From
Classical to Adaptive Methods, Rev. Mod. Phys., 82, 1419–1458 (2010)

[74] Regler et al., Filter Methods in Track and Vertex Reconstruction, International

Journal of Modern Physics C, 07, 521–542 (1996)

[75] R. Mankel, Pattern Recognition and Event Reconstruction in Particle Physics
Experiments, Reports on Progress in Physics, 67, 553–622 (2004)

[76] F. James, Fitting Tracks in Wire Chambers Using the Chebyshev Norm Instead
of Least Squares, Nucl. Instrum. Meth., 211, 145–152 (1983)

[77] N. Chernov et al., Track and Vertex Reconstruction in Discrete Detectors
Using Chebyshev Metrics, Comput. Phys. Commun., 74, 217–227 (1993)

[78] S. Amrouche et al., The Tracking Machine Learning Challenge: Accuracy
Phase (2021), arXiv:1904.06778 [hep-ex]

170



[79] ATLAS Collaboration, Technical Design Report for the ATLAS Inner Tracker
Pixel Detector, Tech. Rep. CERN-LHCC-2017-021, ATLAS-TDR-030,

CERN, Geneva (2017), doi: 10.17181/CERN.FOZZ.ZP3Q

[80] R. Karabowicz, Global Track Finder for PANDA experiment, GSI

SCIENTIFIC REPORT (2010)

[81] S. Wolfram, Statistical Mechanics of Cellular Automata, Rev. Mod. Phys. 55,

601-644 (1983), doi: 10.1103/RevModPhys.55.601

[82] A. Strandlie, J. Wroldsen, R. Frühwirth and B. Lillekjendlie, Particle Tracks
Fitted on the Riemann Sphere, Comput. Phys. Commun. 131 95-108 (2000).

[83] J. Schumann, Entwicklung eines schnellen Algorithmus zur Suche von
Teilchenspuren im "Straw Tube Tracker" des PANDA-Detectors, Bachelor

Thesis, Fachhochschule Aachen, Campus Jülich, Jülich (2013)

[84] J. Schumann, Beschleunigung eins Spurfindealgorithmus für den Straw Tube
Tracker des PANDA-Detektors durch Parallelisierung mit CUDA C, Master

Thesis, Fachhochschule Aachen, Campus Jülich, Jülich (2015)

[85] J. Regina, Time-Based Reconstruction of Hyperons at PANDA at FAIR,

Licentiate Thesis, Uppsala University, Uppsala (2021)

[86] W. Ikegami Andersson et al. A Generalized Approach to Longitudinal
Momentum Determination in Cylindrical Straw Tube Detectors, Comput

Softw Big Sci 5, 18 (2021), doi: 10.1007/s41781-021-00064-0

[87] R. O. Duda and P. E. Hart. Use of the Hough Transformation to Detect Lines
and Curves in Pictures. Commun. ACM 15 (1972), p. 11.

[88] Lehrach et al., Beam Performance and Luminosity Limitations in the
High-energy Storage Ring (HESR), Nucl. Instrum. Meth. A, 561, 289–296

(2006)

[89] A. Samuel, Some Studies in Machine Learning Using the Game of Checkers, in

IBM Journal of Research and Development, 3-3, 210–229 (1959), doi:

10.1147/rd.33.0210.

[90] P. Cunningham et al., Machine Learning Techniques for Multimedia: Case
Studies on Organization and Retrieval, Springer Berlin, Heidelberg (2008).

doi: 10.1007/978-3-540-75171-7

[91] M. Ester, H. P. Kriegel, J. Sander, and X. Xu, A Density-Based Algorithm for
Discovering Clusters in Large Spatial Databases with Noise, in Proceedings of

the 2nd International Conference on Knowledge Discovery and Data Mining

(1996)

[92] Lindholm et al., Supervised Machine Learning, Cambridge University Press

(2020)

[93] Sutton et al., Reinforcement Learning: An Introduction, MIT Press (2018)

[94] W. S. McCulloch, W. Pitts, A logical calculus of the ideas immanent in
nervous activity, The bulletin of mathematical biophysics, 5, 115-133 (1943)

[95] W. Pitts, WS S. McCulloch, How we know universals the perception of
auditory and visual forms, The bulletin of mathematical biophysics, 9,

127-147 (1947)

[96] I. Goodfellow, Y. Bengio, A. Courville, Deep Learning, MIT Press (2016)

[97] D. Rumelhart, G. Hinton, R. Williams, Learning representations by
back-propagating errors, Nature, 323, 533–536 (1986), doi:

10.1038/323533a0

171



[98] S. Hochreiter, J. Schmidhuber, Long Short-Term Memory, Neural

Computation, 9(8), 1735–1780 (1997), doi: 10.1162/neco.1997.9.8.1735

[99] K. Cho et al., On the Properties of Neural Machine Translation:
Encoder-Decoder Approaches, Eighth Workshop on Syntax, Semantics and

Structure in Statistical Translation (2014), arXiv:1409.1259 [cs.CL]

[100] Y. LeCun, Generalization and Network Design Strategies, Technical Report

CRG-TR-89-4, University of Toronto (1989)

[101] A. Vaswani et al., Attention Is All You Need, 31st Conference on Neural

Information Processing Systems (2017), arXiv:1706.03762 [cs.CL]

[102] M. Bronstein et al., Geometric Deep Learning: Going beyond Euclidean data,

IEEE Signal Processing Magazine, 34, 18–42 (2017), doi:

10.1109/MSP.2017.2693418.

[103] M. Bronstein et al., Geometric Deep Learning: Grids, Groups, Graphs,
Geodesics, and Gauges (2021) arXiv:2104.13478 [cs.LG]

[104] T. Cohen et al., Spherical CNNs, in Proceedings of the 6th International

Conference on Learning Representations (2018), arXiv:1801.10130 [cs.LG]

[105] M. Zaheer et al., Deep Sets, 31st Conference on Neural Information

Processing Systems (2017), arXiv:1703.06114 [cs.LG]

[106] J. Lee et al., Set Transformer: A Framework for Attention-based
Permutation-Invariant Neural Networks, Thirty-sixth International Conference

on Machine Learning (2019), arXiv:1810.00825 [cs.LG]

[107] J. Masci et al., Geodesic Convolutional Neural Networks on Riemannian
Manifolds (2015) arXiv:1501.06297 [cs.CV]

[108] W.L. Hamilton, Graph Representation Learning, Synthesis Lectures on

Artificial Intelligence and Machine Learning, 14-3, 1–159 (2020)

[109] A. Sperduti and A. Starita, Supervised Neural Networks for the Classification
of Structures, IEEE Transactions on Neural Networks, 8, 714–735 (1997), doi:

10.1109/72.572108.

[110] M. Gori, G. Monfardini, F. Scarselli, A New Model for Learning in Graph
Domains, IEEE International Joint Conference on Neural Networks, 2,

729–734 (2005), doi: 10.1109/IJCNN.2005.1555942.

[111] A. Micheli, "Neural Network for Graphs: A Contextual Constructive
Approach, IEEE Transactions on Neural Networks, 20 no. 3, 498–511 (2009),

doi: 10.1109/TNN.2008.2010350.

[112] F. Scarselli et al., The Graph Neural Network Model, IEEE Transactions on

Neural Networks, 20, 61–80 (2009), doi: 10.1109/TNN.2008.2005605.

[113] T. N. Kipf, M. Welling, Semi-Supervised Classification with Graph
Convolutional Networks, Fifth International Conference on Learning

Representations (2017), arXiv:1609.02907 [cs.LG]

[114] J. Gilmer et al., Neural Message Passing for Quantum Chemistry, in

Proceedings of the 34 th International Conference on Machine Learning

(2017), arXiv:1704.01212 [cs.LG]

[115] P. Velickovic et al., Graph Attention Networks, Sixth International Conference

on Learning Representations (2018), arXiv:1710.10903 [stat.ML]

[116] Battaglia et al., Interaction Networks for Learning about Objects, Relations
and Physics (2016), arXiv:1612.00222 [cs.AI]

172



[117] Battaglia et al., Relational Inductive Biases, Deep Learning, and Graph
Networks (2018), arXiv:1806.01261 [cs.LG]

[118] Zhou et al., Graph Neural Networks: A Review of Methods and Applications
(2018), arXiv:1812.08434 [cs.LG]

[119] Zhang et al., Deep Learning on Graphs: A Survey (2018), arXiv:1812.04202

[cs.LG]

[120] Lee et al., Attention Models in Graphs: A Survey (2018), arXiv:1807.07984

[121] Zhang et al., Graph Convolutional Networks: A Comprehensive Review,

Computational Social Networks, 6-11 (2019), doi:

10.1186/s40649-019-0069-y

[122] Wu et al., A Comprehensive Survey on Graph Neural Networks (2019),

arXiv:1901.00596 [cs.LG]

[123] S.K. Kumar, On Weight Initialization in Deep Neural Networks (2017),

arXiv:1704.08863 [cs.LG]

[124] Xavier Glorot and Yoshua Bengio, Understanding the Difficulty of Training
Deep Feedforward Neural Networks, Proceedings of the Thirteenth

International Conference on Artificial Intelligence and Statistics, 9, 249–256

(2010)

[125] K. He et al., Delving Deep into Rectifiers: Surpassing Human-Level
Performance on ImageNet Classification (2015), arXiv:1502.01852 [cs.CV]

[126] Ghosh et al., Comparative Analysis of Genetic Algorithm, Simulated
Annealing and Cutting Angle Method for Artificial Neural Networks, Machine

Learning and Data Mining in Pattern Recognition (Book), doi:

10.1007/11510888_7 (2005)

[127] F. Glover and M. Laguna, Tabu Search, Handbook of Combinatorial

Optimization, Springer, Boston, MA (1998), doi:

10.1007/978-1-4613-0303-9_33

[128] Dauphin et al., Identifying and Attacking the Saddle Point Problem in
High-dimensional Non-convex Optimization, arXiv:1406.2572 [cs.LG] (2014)

[129] Y. Nesterov, A Method for Unconstrained Convex Minimization Problem With
the Rate of Convergence O(1/k2). Doklady ANSSSR (translated as

Soviet.Math.Docl.), 269, 543–547 (1983)

[130] Duchi et al., Adaptive Subgradient Methods for Online Learning and
Stochastic Optimization, Journal of Machine Learning Research, 12,

2121–2159 (2011)

[131] Matthew D. Zeiler, ADADELTA: An Adaptive Learning Rate Method (2012),

arXiv:1212.5701 [cs.LG]

[132] T. Tieleman and G. Hinton, Lecture 6.5-RmsProp: Divide the Gradient by a
Running Average of Its Recent Magnitude. COURSERA: Neural Networks for

Machine Learning, 4, 26–31, (2012)

[133] D. Kingma and J. Ba, Adam: A Method for Stochastic Optimization,

International Conference on Learning Representations (2015),

arXiv:1412.6980 [cs.LG]

[134] T. Dozat, Incorporating Nesterov Momentum into Adam, International

Conference on Learning Representations (2016)

[135] Reddi et al., On the Convergence of Adam and Beyond, International

Conference on Learning Representations (2018), arXiv:1904.09237 [cs.LG]

173



[136] I. Loshchilov, F. Hutter, Decoupled Weight Decay Regularization, International

Conference on Learning Representations (2019), arXiv:1711.05101 [cs.LG]

[137] Sebastian Ruder, An Overview of Gradient Descent Optimization Algorithms,

arXiv:1609.04747 [cs.LG] (2016)

[138] K. Albertsson et al., Machine Learning in High Energy Physics Community
White Paper, arXiv:1807.02876 [physics.comp-ph] (2018)

[139] HEP ML Community, A Living Review of Machine Learning for Particle
Physics, https://iml-wg.github.io/HEPML-LivingReview/

[140] Kisel et al., Applications of Neural Networks in Experimental Physics, Phys.

Part. Nucl., 24, 657–676 (1993)

[141] Bruce H. Denby, Neural Networks in High Energy Physics: A Ten Year
Perspective, Comput. Phys. Commun., 119, 219–231 (1999)

[142] John J. Hopfield, Neural Networks and Physical Systems With Emergent
Collective Computational Abilities, Proc. Nat. Acad. Sci., 79, 2554–2558

(1982)

[143] Bruce H. Denby, Neural Networks and Cellular Automata in Experimental
High Energy Physics, Comput. Phys. Commun., 49, 429–448 (1988)

[144] C. Peterson, Track Finding With Neural Networks, Nucl. Instrum. Methods

Phys. Res. A, 279, 537–545 (1989)

[145] C. Peterson and J. R. Anderson, A Mean Field Theory Learning Algorithm for
Neural Networks, Complex Systems, 1, 995–1019 (1987)

[146] G. Stimpfl-Abele and L. Garrido, Fast Track Finding With Neural Networks,

Comput. Phys. Commun., 64, 46–56 (1991)

[147] S. Baginyan et al., Tracking by a Modified Rotor Model of Neural Network,

Comput. Phys. Commun., 79, 165–178 (1994)

[148] A. Badalà et al., Neural Tracking in ALICE, Nucl. Instrum. Methods Phys.

Res. A, 502, 503–506 (2003)

[149] A. Badalà et al., Combined Tracking in the ALICE Detector, Nucl. Instrum.

Methods Phys. Res. A, 534, 211-216 (2004)

[150] M. Ohlsson et al., Track Finding with Deformable Templates: The Elastic
Arms Approach, Comput. Phys. Commun., 71, 77–98 (1992)

[151] M. Ohlsson, Extensions and Explorations of the Elastic Arms Algorithm,

Comput. Phys. Commun., 77, 19–32 (1993)

[152] TrackML Challenge, Particle Tracking Challenge on Kaggle, Web: TrackML

Challenge

[153] Project HEP.TrkX, HEP Advanced Tracking Algorithms With Cross-cutting
Applications (2016), Web: Project HEP.TrkX

[154] S. Farrell et al., The HEP.TrkX Project: Deep Neural Networks for HL-LHC
Online and Offline Tracking, EPJ Web of Conference, in Proceedings of

Connecting The Dots/Intelligent Tracker (CTD/WIT 2017), 150, 00003

(2017), doi: 10.1051/epjconf/201715000003

[155] Project Exa.TrkX, HEP Advanced Tracking Algorithms at the Exascale (2019).

Web: Project Exa.TrkX

[156] S. Farrell et al., Novel Deep Learning Methods for Track Reconstruction,

Connecting the Dots Workshop (2018), arXiv:1810.06111 [hep-ex]

[157] N. Choma et al., Track Seeding and Labelling with Embedded-space Graph
Neural Networks, Connecting the Dots Workshop (2020), arXiv:2007.00149

174



[physics.ins-det]

[158] Ju et al., Graph Neural Networks for Particle Reconstruction in High Energy
Physics detectors, Machine Learning and the Physical Sciences (NeurIPS)

(2019), arXiv:2003.11603 [physics.ins-det]

[159] Biscarat et al., Towards a Realistic Track Reconstruction Algorithm Based on
Graph Neural Networks for the HL-LHC (2021), arXiv:2103.00916

[physics.ins-det]

[160] J. Pata et al., MLPF: Efficient Machine-learned Particle-flow Reconstruction
Using Graph Neural Networks, Eur. Phys. J. C 81, 381 (2021),

arXiv:2101.08578 [physics.data-an]

[161] Hewes et al., Graph Neural Network for Object Reconstruction in Liquid
Argon Time Projection Chambers (2021), arXiv:2103.06233 [hep-ex]

[162] W. Guan et al., Quantum Machine Learning in High Energy Physics (2020),

arXiv:2005.08582 [quant-ph]

[163] Tuysuz et al., Performance of Particle Tracking Using a Quantum Graph
Neural Network (2020), arXiv:2012.01379 [quant-ph]

[164] A. Akram and X. Ju, Track Reconstruction using Geometric Deep Learning in
the Straw Tube Tracker (STT) at the PANDA Experiment, Connecting the Dots

Workshop (2022), arXiv:2208.12178 [hep-ex]

[165] Xiangyang et al., Performance of a Geometric Deep Learning Pipeline for
HL-LHC Particle Tracking, Eur. Phys. J. C, 81, 876/10 (2021), doi:

10.1140/epjc/s10052-021-09675-8

[166] Donald E. Knuth, Components and Traversal,
https://cs.stanford.edu/ knuth/fasc12a+.pdf (2022)

[167] He et al., The Connected-Component Labeling Problem: a Review of
State-of-the-art Algorithms, Pattern Recognition, 70, 25–43 (2017), doi:

10.1016/j.patcog.2017.04.018

[168] A. Hennequin et al., SparseCCL: Connected Components Labeling and
Analysis for sparse images, Conference on Design and Architectures for

Signal and Image Processing (DASIP), Montreal, QC, Canada, 2019, pp.

65-70, doi: 10.1109/DASIP48288.2019.9049184

[169] Aric A. Hagberg, Daniel A. Schult and Pieter J. Swart, Exploring network
structure, dynamics, and function using NetworkX, in Proceedings of the 7th

Python in Science Conference (SciPy2008), 11–15, (2008)

[170] M. Fey, J.E. Lenssen, Fast Graph Representation Learning with PyTorch
Geometric, ICLR Workshop on Representation Learning on Graphs and

Manifolds (2019), arXiv:1903.02428 [cs.LG]

[171] A. Alicke et al., Track Finding for the PANDA Experiment, Connecting the

Dots Workshop [Conference presentation] (2022)

[172] R. Liaw et al., Tune: A Research Platform for Distributed Model Selection and
Training (2018), arXiv:1807.05118 [cs.LG]

[173] K. He et al., Deep Residual Learning for Image Recognition, IEEE Conference

on Computer Vision and Pattern Recognition (2016), arXiv:1512.03385

[cs.CV]

[174] G. Perez Andrade, Production of the Σ̄0 hyperon in the PANDA experiment at
FAIR, Master Thesis, Uppsala University, Uppsala (2019)

175



[175] Catarina E. Sahlberg, On Antihyperon-Hyperon Production in
Antiproton-Proton Collisions with the PANDA Experiment, Master Thesis,

Uppsala University, Uppsala (2007)

[176] A. Capella et al., Dual Parton Model, Physics Reports, 236, 225–329 (1994).

doi: 10.1016/0370-1573(94)90064-7

[177] P. Avery, Vertexing and Kinematic Fitting, Part I: Basic Theory, Lecture given

at SLAC (1998)

[178] P. Avery, Vertexing and Kinematic Fitting, Part III: Vertex Fitting, Lecture

given at SLAC (1998)

[179] M. Gustafsson, Monte Carlo simulations of D-mesons with extended targets in
the PANDA detector, Master Thesis, Uppsala University, Uppsala (2016)

[180] DeepLearning.AI, Initializing neural networks,

������������	

��
�
��������������
���������������� , [Online;

Accessed 30-Dec-2022]

[181] Sergey Ioffe, Christian Szegedy, Batch Normalization: Accelerating Deep
Network Training by Reducing Internal Covariate Shift, arXiv:1502.03167

[cs.LG] (2015)

[182] Jimmy Lei Ba, Jamie Ryan Kiros, Geoffrey E. Hinton, Layer Normalization,

arXiv:1607.06450 [stat.ML] (2016)

176



Glossary

Barrel DIRC Barrel Detection of Internally Reflected Cherenkov 36

BToF Barrel Time-of-Flight 34, 35

COSY COoler SYnchrtron 25

CR Collector Ring 25, 26

DIRC Detection of Internally Reflected Cherenkov 35

Disc DIRC Disc Detection of Internally Reflected Cherenkov 36

EMC Electromagnetic Calorimeter 36

ESR Experimental Storage Ring 24

FAIR Facility for Anti-proton and Ion Research 13, 24

FRICH Forward Ring Imaging CHerenkov 39

FSC Forward Spectrometer Electromagnetic Calorimeter 38, 40

FToF Forward Time-of-Flight 39

FTS Forward Tracking Stations 38

GSI GSI Helmholtz Center for Heavy Ion Research 24

HESR High Energy Storage Ring 13, 24–26

LMD Luminosity Detector 38

MRS Muon Range System 36, 40

MS Muon System 36

NESR New Experimental Storage Ring 25

nominal interaction point In particle physics, an interaction point (IP) is the

place where particles collide. One differentiates between the nominal IP,

which is the design position of the IP, and the real or physics IP, which

is the position where the particles actually collide. The real IP is the

primary "vertex" of the particle collision 31

p-LINAC Proton LINear ACcelerator 24, 25

PANDA antiProton ANihilation at DArmstadt 13, 24

QCD Quantum Chromodynamics 27

RESR Recuperated Experimental Storage Ring 25, 26

177



RICH Ring Imaging CHerenkov 38

SIS18 Heavy-ion Synchrotron 18 24

ToF Time-of-Flight 38

UNILAC Universal Linear Accelerator 24

178



Acta Universitatis Upsaliensis
Uppsala Dissertations from the Faculty of Science
Editor: The Dean of the Faculty of Science

1–11: 1970–1975
12.  Lars Thofelt: Studies on leaf temperature recorded by direct measurement and 

by thermography. 1975.
13.  Monica Henricsson: Nutritional studies on Chara globularis Thuill., Chara zey-

lanica Willd., and Chara haitensis Turpin. 1976.
14.  Göran Kloow: Studies on Regenerated Cellulose by the Fluorescence Depolar-

ization Technique. 1976.
15.  Carl-Magnus Backman: A High Pressure Study of the Photolytic Decomposi-

tion of Azoethane and Propionyl Peroxide. 1976.
16.  Lennart Källströmer: The significance of biotin and certain monosaccharides 

for the growth of Aspergillus niger on rhamnose medium at elevated tempera-
ture. 1977.

17.  Staffan Renlund: Identification of Oxytocin and Vasopressin in the Bovine Ade-
nohypophysis. 1978.

18.  Bengt Finnström: Effects of pH, Ionic Strength and Light Intensity on the Flash 
Photolysis of L-tryptophan. 1978.

19.  Thomas C. Amu: Diffusion in Dilute Solutions: An Experimental Study with 
Special Reference to the Effect of Size and Shape of Solute and Solvent Mole-
cules. 1978.

20.  Lars Tegnér: A Flash Photolysis Study of the Thermal Cis-Trans Isomerization 
of Some Aromatic Schiff Bases in Solution. 1979.

21.  Stig Tormod: A High-Speed Stopped Flow Laser Light Scattering Apparatus and 
its Application in a Study of Conformational Changes in Bovine Serum Albu-
min. 1985.

22.  Björn Varnestig: Coulomb Excitation of Rotational Nuclei. 1987.
23.  Frans Lettenström: A study of nuclear effects in deep inelastic muon scattering. 

1988.
24.  Göran Ericsson: Production of Heavy Hypernuclei in Antiproton Annihilation. 

Study of their decay in the fission channel. 1988.
25.  Fang Peng: The Geopotential: Modelling Techniques and Physical Implications 

with Case Studies in the South and East China Sea and Fennoscandia. 1989.
26.  Md. Anowar Hossain: Seismic Refraction Studies in the Baltic Shield along the 

Fennolora Profile. 1989.
27.  Lars Erik Svensson: Coulomb Excitation of Vibrational Nuclei. 1989.
28.  Bengt Carlsson: Digital differentiating filters and model based fault detection. 

1989.
29.  Alexander Edgar Kavka: Coulomb Excitation. Analytical Methods and Experi-

mental Results on even Selenium Nuclei. 1989.
30.  Christopher Juhlin: Seismic Attenuation, Shear Wave Anisotropy and Some 

Aspects of Fracturing in the Crystalline Rock of the Siljan Ring Area, Central 
Sweden. 1990.



31.  Torbjörn Wigren: Recursive Identification Based on the Nonlinear Wiener Model. 
1990.

32.  Kjell Janson: Experimental investigations of the proton and deuteron structure 
functions. 1991.

33.  Suzanne W. Harris: Positive Muons in Crystalline and Amorphous Solids. 1991.
34.  Jan Blomgren: Experimental Studies of Giant Resonances in Medium-Weight 

Spherical Nuclei. 1991.
35.  Jonas Lindgren: Waveform Inversion of Seismic Reflection Data through Local 

Optimisation Methods. 1992.
36.  Liqi Fang: Dynamic Light Scattering from Polymer Gels and Semidilute Solutions. 

1992.
37.  Raymond Munier: Segmentation, Fragmentation and Jostling of the Baltic Shield 

with Time. 1993.

Prior to January 1994, the series was called Uppsala Dissertations from the Faculty of 
Science.

Acta Universitatis Upsaliensis
Uppsala Dissertations from the Faculty of Science and Technology
Editor: The Dean of the Faculty of Science

1–14: 1994–1997. 15–21: 1998–1999. 22–35: 2000–2001. 36–51: 2002–2003.
52.  Erik Larsson: Identification of Stochastic Continuous-time Systems. Algorithms, 

Irregular Sampling and Cramér-Rao Bounds. 2004.
53.  Per Åhgren: On System Identification and Acoustic Echo Cancellation. 2004.
54.  Felix Wehrmann: On Modelling Nonlinear Variation in Discrete Appearances of 

Objects. 2004.
55.  Peter S. Hammerstein: Stochastic Resonance and Noise-Assisted Signal Transfer. 

On Coupling-Effects of Stochastic Resonators and Spectral Optimization of Fluctu-
ations in Random Network Switches. 2004.

56.  Esteban Damián Avendaño Soto: Electrochromism in Nickel-based Oxides. Color-
ation Mechanisms and Optimization of Sputter-deposited Thin Films. 2004.

57.  Jenny Öhman Persson: The Obvious & The Essential. Interpreting Software Devel-
opment & Organizational Change. 2004.

58.  Chariklia Rouki: Experimental Studies of the Synthesis and the Survival Probabili-
ty of Transactinides. 2004.

59.  Emad Abd-Elrady: Nonlinear Approaches to Periodic Signal Modeling. 2005. 
60.  Marcus Nilsson: Regular Model Checking. 2005.
61.  Pritha Mahata: Model Checking Parameterized Timed Systems. 2005.
62.  Anders Berglund: Learning computer systems in a distributed project course: The 

what, why, how and where. 2005.
63.  Barbara Piechocinska: Physics from Wholeness. Dynamical Totality as a Concep-

tual Foundation for Physical Theories. 2005.
64.  Pär Samuelsson: Control of Nitrogen Removal in Activated Sludge Processes. 

2005.



65.  Mats Ekman: Modeling and Control of Bilinear Systems. Application to the Acti-
vated Sludge Process. 2005.

66.  Milena Ivanova: Scalable Scientific Stream Query Processing. 2005.
67.  Zoran Radovic´: Software Techniques for Distributed Shared Memory. 2005.
68.  Richard Abrahamsson: Estimation Problems in Array Signal Processing, System 

Identification, and Radar Imagery. 2006.
69.  Fredrik Robelius: Giant Oil Fields – The Highway to Oil. Giant Oil Fields and their 

Importance for Future Oil Production. 2007.
70.  Anna Davour: Search for low mass WIMPs with the AMANDA neutrino telescope. 

2007.
71.  Magnus Ågren: Set Constraints for Local Search. 2007.
72.  Ahmed Rezine: Parameterized Systems: Generalizing and Simplifying Automatic 

Verification. 2008.
73.  Linda Brus: Nonlinear Identification and Control with Solar Energy Applications. 

2008.
74.  Peter Nauclér: Estimation and Control of Resonant Systems with Stochastic Distur-

bances. 2008.
75.  Johan Petrini: Querying RDF Schema Views of Relational Databases. 2008.
76.  Noomene Ben Henda: Infinite-state Stochastic and Parameterized Systems. 2008.
77.  Samson Keleta: Double Pion Production in dd→αππ Reaction. 2008.
78.  Mei Hong: Analysis of Some Methods for Identifying Dynamic Errors-invariables 

Systems. 2008.
79.  Robin Strand: Distance Functions and Image Processing on Point-Lattices With 

Focus on the 3D Face-and Body-centered Cubic Grids. 2008.
80.  Ruslan Fomkin: Optimization and Execution of Complex Scientific Queries. 2009.
81.  John Airey: Science, Language and Literacy. Case Studies of Learning in Swedish 

University Physics. 2009.
82.  Arvid Pohl: Search for Subrelativistic Particles with the AMANDA Neutrino Tele-

scope. 2009.
83.  Anna Danielsson: Doing Physics – Doing Gender. An Exploration of Physics Stu-

dents’ Identity Constitution in the Context of Laboratory Work. 2009.
84.  Karin Schönning: Meson Production in pd Collisions. 2009.
85.  Henrik Petrén: η Meson Production in Proton-Proton Collisions at Excess Energies 

of 40 and 72 MeV. 2009.
86.  Jan Henry Nyström: Analysing Fault Tolerance for ERLANG Applications. 2009.
87.  John Håkansson: Design and Verification of Component Based Real-Time Sys-

tems. 2009.
88. Sophie Grape: Studies of PWO Crystals and Simulations of the   ̄pp → Λ̄Λ, Λ̄Σ0 Re-

actions for the PANDA Experiment. 2009.
90. Agnes Rensfelt. Viscoelastic Materials. Identification and Experiment Design. 2010.
91. Erik Gudmundson. Signal Processing for Spectroscopic Applications. 2010.
92. Björn Halvarsson. Interaction Analysis in Multivariable Control Systems. Applica-

tions to Bioreactors for Nitrogen Removal. 2010.
93. Jesper Bengtson. Formalising process calculi. 2010.  
94. Magnus Johansson. Psi-calculi: a Framework for Mobile Process Calculi. Cook 

your own correct process calculus – just add data and logic. 2010. 
95. Karin Rathsman. Modeling of Electron Cooling. Theory, Data and Applications. 

2010. 



96. Liselott Dominicus van den Bussche. Getting the Picture of University Physics. 
2010.

97. Olle Engdegård. A Search for Dark Matter in the Sun with AMANDA and IceCube. 
2011.

98. Matthias Hudl. Magnetic materials with tunable thermal, electrical, and dynamic 
properties. An experimental study of magnetocaloric, multiferroic, and spin-glass 
materials. 2012.

99. Marcio Costa. First-principles Studies of Local Structure Effects in Magnetic Mate-
rials. 2012.

100. Patrik Adlarson. Studies of the Decay η→π+π-π0 with WASA-at-COSY. 2012.
101. Erik Thomé. Multi-Strange and Charmed Antihyperon-Hyperon Physics for PAN-

DA. 2012.
102. Anette Löfström. Implementing a Vision. Studying Leaders’ Strategic Use of an 

Intranet while Exploring Ethnography within HCI. 2014.
103. Martin Stigge. Real-Time Workload Models: Expressiveness vs. Analysis Efficiency. 

2014.
104. Linda Åmand. Ammonium Feedback Control in Wastewater Treatment Plants. 

2014.
105. Mikael Laaksoharju. Designing for Autonomy. 2014.
106. Soma Tayamon. Nonlinear System Identification and Control Applied to Selective 

Catalytic Reduction Systems. 2014.
107.  Adrian Bahne. Multichannel Audio Signal Processing. Room Correction and Sound 

Perception. 2014.
108.  Mojtaba Soltanalian. Signal Design for Active Sensing and Communications. 

2014.
109. Håkan Selg. Researching the Use of the Internet — A Beginner’s Guide. 2014.
110. Andrzej Pyszniak. Development and Applications of Tracking of Pellet Streams. 

2014. 
111. Olov Rosén. Parallel Stochastic Estimation on Multicore Platforms. 2015.
112. Yajun Wei. Ferromagnetic Resonance as a Probe of Magnetization Dynamics. A 

Study of FeCo Thin Films and Trilayers. 2015.
113.  Marcus Björk. Contributions to Signal Processing for MRI. 2015. 
114.  Alexander Madsen. Hunting the Charged Higgs Boson with Lepton Signatures 

in the ATLAS Experiment. 2015.
115.  Daniel Jansson. Identification Techniques for Mathematical Modeling of the  

Human Smooth Pursuit System. 2015. 
116. Henric Taavola. Dark Matter in the Galactic Halo. A Search Using Neutrino 

Induced Cascades in the DeepCore Extension of IceCube. 2015.
117.  Rickard Ström. Exploring the Universe Using Neutrinos. A Search for Point 

Sources in the Southern Hemisphere Using the IceCube Neutrino Observatory. 
2015. 

118.  Li Caldeira Balkeståhl. Measurement of the Dalitz Plot Distribution for η→π+π−

π0 with KLOE. 2015.
119. Johannes Nygren. Input-Output Stability Analysis of Networked Control Systems. 

2016. 
120. Joseph Scott. Other Things Besides Number. Abstraction, Constraint Propagation, 

and String Variable Types. 2016.
121. Andrej Andrejev. Semantic Web Queries over Scientific Data. 2016.



122.  Johan Blom. Model-Based Protocol Testing in an Erlang Environment. 2016.
123. Liang Dai. Identification using Convexification and Recursion. 2016. 
124. Adriaan Larmuseau. Protecting Functional Programs From Low-Level Attackers. 

2016.
125.  Lena Heijkenskjöld. Hadronic Decays of the ω Meson. 2016.
126. Delphine Misao Lebrun. Photonic crystals and photocatalysis. Study of titania in-

verse opals. 2016.
127. Per Mattsson. Modeling and identification of nonlinear and impulsive systems. 

2016.
128. Lars Melander. Integrating Visual Data Flow Programming with Data Stream 

Management. 2016.
129.  Kristofer Severinsson. Samarbete = Samverkan? En fallstudie av AIMday vid 

Uppsala universitet. 2016.
130. Nina Fowler. Walking the Plank of the Entrepreneurial University. The little spin-

out that could? 2017.
131. Kaj Jansson. Measurements of Neutron-induced Nuclear Reactions for More Pre-

cise Standard Cross Sections and Correlated Fission Properties. 2017.
132. Petter Bertilsson Forsberg. Collaboration in practice. A multiple case study on col-

laboration between small enterprises and university researchers. 2018.
133. Andreas Löscher. Targeted Property-Based Testing with Applications in Sensor 

Networks. 2018.
134. Simon Widmark. Causal MMSE Filters for Personal Audio. A Polynomial Matrix 

Approach. 2018.
135. Damian Pszczel. Search for a new light boson in meson decays. 2018.
136. Joachim Pettersson. From Strange to Charm. Meson production in electron-positron 

collisions. 2018.
137. Elisabeth Unger. The Extremes of Neutrino Astronomy. From Fermi Bubbles with 

IceCube to Ice Studies with ARIANNA. 2019.
138. Monica Norberg. Engagerat ledarskap för att skapa förutsättningar för allas delak-

tighet. Utgångspunkter i kvalitetsarbetet. 2019.
139. Peter Backeman. Quantifiers and Theories. A Lazy Aproach. 2019.
140. Walter Ikegami Andersson. Exploring the Merits and Challenges of Hyperon 

Physics. with PANDA at FAIR. 2020.
141. Petar Bokan. Pair production of Higgs bosons in the final state with bottom quarks 

and τ leptons in the ATLAS experiment. Search results using LHC Run 2 data and 
prospect studies at the HL-LHC. 2020.

142. Carl Kronlid. Engineered temporary networks. Effects of control and temporality 
on inter-organizational interaction. 2020.

143.  Alexander Burgman. Bright Needles in a Haystack. A Search for Magnetic Mono-
poles Using the IceCube Neutrino Observatory. 2020.

144. Eleni Myrto Asimakopoulou. Search for charged Higgs bosons with tau-lepton sig-
natures at the ATLAS experiment of the Large Hadron Collider and development 
of novel semiconductor particle detectors. 2021.

145.  Oscar Samuelsson. Sensor Fault Detection and Process Monitoring in Water Re-
source Recovery Facilities. 2021.

146. Helena Fornstedt. Innovation Resistance. Moving Beyond Dominant Framings. 
2021.



147. Jenny Regina. Time for Hyperons. Development of Software Tools for Reconstruct-
ing Hyperons at PANDA and HADES. 2022.

148. Viktor Thorén. Hadron Physics in a Polarized World.Exploring Electromagnetic In-
teractions with Spin Observables. 2022.

149. Thomas Mathisen. Exotic Decays of Vector-Like Quarks and Development of a Test 
Procedure for the ITk Strip Module at the ATLAS Detector for the HL-LHC. 2022.

150. Adeel Akram. Towards Realistic Hyperon Reconstruction in PANDA. From 
 Tracking with Machine Learning to Interactions with Residual Gas. 2023.






	Abstract
	Contents
	Part I: Motivation and Methods
	1. Introduction
	1.1 Thesis Disposition

	2. Hadron Physics
	2.1 The Standard Model
	2.1.1 Quantum Chromodynamics (QCD)

	2.2 Hyperon Physics
	2.2.1 Strange Hyperons
	2.2.2 Hyperon Production
	2.2.3 Hyperon Decays

	2.3 Previous Hyperon Studies
	2.4 Scientific Questions for the Thesis

	3. The PANDA Experiment at FAIR
	3.1 Facility for Anti-proton and Ion Research
	3.1.1 Antiproton Target and Separator
	3.1.2 Collector-Storage Rings

	3.2 The High Energy Storage Ring
	3.3 The PANDA Physics Program
	3.3.1 Nucleon Structure
	3.3.2 Strangeness Physics
	3.3.3 Charm and Exotics
	3.3.4 Hadrons in Nuclei

	3.4 The PANDA Detector
	3.4.1 Target Spectrometer (TS)
	3.4.2 Forward Spectrometer (FS)
	3.4.3 Internal Targets

	3.5 Effective Target Profiles
	3.5.1 Vacuum Simulations

	3.6 Data Analysis Tools
	3.6.1 The PandaRoot Analysis Chain
	3.6.2 Machine Learning Tool Chain


	4. Track Reconstruction
	4.1 Track Reconstruction
	4.2 Track Evaluation
	4.3 Track Reconstruction in PANDA
	4.3.1 The IdealTrackFinder
	4.3.2 The BarrelTrackFinder
	4.3.3 The SttCellTrackFinder
	4.3.4 The PzFinder

	4.4 Computing Challenges at PANDA
	4.4.1 Interaction Rate
	4.4.2 Decay Signatures


	5. Machine Learning (ML)
	5.1 Learning Types
	5.2 Deep Learning
	5.2.1 Deep Neural Networks

	5.3 Geometric Deep Learning
	5.4 Supervised Deep Learning
	5.4.1 Network Training
	5.4.2 Network Optimization
	5.4.3 Network Generalization
	5.4.4 Speeding up Network Training
	5.4.5 Hyperparameter Tuning
	5.4.6 Network Evaluation

	5.5 Applications in HEP
	5.5.1 Pattern Recognition using Neural Networks

	5.6 Novel Deep Learning Methods for PANDA
	5.6.1 Related Work


	Part II: Realistic Track Reconstruction in the PANDA Target Spectrometer using Deep Learning Techniques
	6. Strategies of Deep Learning in PANDA Tracking
	6.1 Problem Formulation
	6.2 Deep Learning Pipeline
	6.2.1 Data Generation
	6.2.2 Edge Construction
	6.2.3 Edge Classification
	6.2.4 Track Formation

	6.3 Strategy

	7. Application of Deep Learning in the Straw Tube Tracker (STT)
	7.1 Deep Learning Pipeline
	7.1.1 Data Generation
	7.1.2 Edge Construction
	7.1.3 Edge Classification
	7.1.4 Track Formation

	7.2 Track Evaluation
	7.3 Summary of Results

	8. Application of Geometric Deep Learning in the Straw Tube Tracker (STT)
	8.1 Geometric Deep Learning Pipeline
	8.1.1 Data Generation
	8.1.2 Edge Construction
	8.1.3 Edge Classification
	8.1.4 Track Formation

	8.2 Track Evaluation
	8.3 Summary of Results

	9. Hyperon Reconstruction in the STT
	9.1 The p¯p→ ΛΛ Reaction
	9.1.1 Reaction Kinematics

	9.2 Geometric Deep Learning Pipeline
	9.2.1 Data Preparation
	9.2.2 Edge Construction
	9.2.3 Edge Classification
	9.2.4 Track Formation

	9.3 Track Evaluation
	9.4 Summary of Results

	Part III: Hyperon Simulations with Realistic Target Profiles
	10. Goals and Strategies
	10.1 Figure of Merit
	10.2 Strategy

	11. Hyperon Reconstruction using a Point-like Target
	11.1 Data Generation
	11.1.1 The Signal
	11.1.2 Non-resonant Background
	11.1.3 Sample Sizes and Weights

	11.2 Analysis Procedure
	11.2.1 Pre-selection
	11.2.2 Final Selection

	11.3 The IdealIP Case

	12. Hyperon Reconstruction using Extended Target Profiles
	12.1 The NormalIP Case
	12.1.1 Invariant Mass Selection
	12.1.2 The z f it(Λ¯ )+z f it(Λ) > 2 cm Criterion
	12.1.3 Results from the Final Selection
	12.1.4 Adjusting the z f it(Λ¯ )+z f it(Λ) Criterion

	12.2 The NormalIP+Cryo Case
	12.2.1 Invariant Mass Selection
	12.2.2 The z f it(Λ¯ )+z f it(Λ) > 2 cm Criterion
	12.2.3 Results from the Final Selection
	12.2.4 Adjusting the z f it(Λ¯ )+z f it(Λ) Criterion

	12.3 Summary of Results

	Part IV: Conclusions, Outlook, Summary and Acknowledgments
	13. Conclusions
	13.1 Part II: Realistic Track Reconstruction
	13.2 Part III: Hyperon Simulations with Realistic Target Profiles

	14. Outlook
	14.1 Part II: Realistic Track Reconstruction
	14.2 Part III: Hyperon Simulations with Realistic Target Profiles

	15. Summary in Swedish
	16. Acknowledgments
	A. Hyperon Analysis
	A.1 Efficiency and Uncertainties
	A.2 Software Versions

	B. Deep Learning
	B.1 Notations
	B.2 Data Vectorization
	B.3 Speeding up Network Training
	B.3.1 Parameter Initialization
	B.3.2 Input Normalization
	B.3.3 Activation Normalization


	References
	Glossary
	Uppsala Dissertations from the Faculty of Science
	Uppsala Dissertations from the Faculty of Science and Technology



