PANDA@FAIR: "subatomic physics with antiprotons"

Johan Messchendorp (FFN-GSI) for the PANDA Collaboration Swedish Nuclear Physicist's Meeting, Oct 28, 2021

Quantum Chromo Dynamics

 $\mathscr{G}_{QCD} = \sum_{\mathbf{q}=\mathbf{u},\mathbf{d},\mathbf{s},\mathbf{c},\mathbf{b}} \bar{\mathbf{q}} (i\gamma_{\mu} D^{\mu} - m_{q}) q$ $-\frac{1}{4} G^{\mu\nu} G_{\mu\nu}$

D.B. Leinweber, CSSM & Department of Physics, University of Adelaide

High Energy Storage Ring - precision antiprotons

MSV-HESR mode (Phase-1+2)

- Energy range: 0.8-15 GeV
- Stochastic cooling: dp/p=3x10-5
- Accumulation: 10¹⁰ antiprotons in 1000 s
- Luminosity up to 2x10³¹ cm⁻²s⁻¹

+RESR (Phase-3)

10¹¹ antiprotons
 2x10³² cm⁻²s⁻¹

Systematic and precise tool to rigorously study the dynamics of QCD

PANDA physics overview

Dan

PANDA physics overview

Dar

Charmonium-like particles - terra incognita

Charmonium-like particles - PANDA opportunities

line shape of, f.e., X(3872)
neutral+charged Z-states
X,Y,Z decays
search for h_c', ³F₄, ...
spin-parity/mass&width of ³D₂
Search for pentaquarks

Jai

- line shape/width of the etac, hc
- radiative transitions
- hadronic transitions
- light-quark spectroscopy

Note: LHCb discovery of ³D₃ candidate: [arXiv:1903.12240]

Resonance scanning

Energy scan with e^+e^- :energy resolution1-2 MeV (primarily JPC=1--)Energy scan with $p\overline{p}$:energy resolution240 keV (E760/835@Fermilab) $\approx 50 \text{ keV}$ (PANDA@FAIR)

Lineshape study of the X(3872)

PANDA physics overview

Dar

EPJA 52 325 (2016)

Time-like Electromagnetic Form Factors(lepton pair production)arXiv:1606.01118

$$\frac{d\sigma}{d\cos\theta} = \frac{\pi\alpha^2}{2\beta s} \left[(1 + \cos^2\theta) |G_M|^2 + \frac{1}{\tau} \sin^2\theta |G_E|^2 \right]$$

q²>0 p **Time-like Electromagnetic Form Factors**

e-

Analytical nature of form factors

17

0.5

7

5

4

6

8

9

 $q^2 [(GeV/c)^2]$

10

q²>0 p μ р e٦ μ **Unique for PANDA**

EPJA57, 30 (2021), arXiv:2006.16363

Form factors from space to time-like region

Space-like and time-like are related by dispersion theory!

Form factors from space to time-like region

Jai

Space-like and time-like are related by dispersion theory!

Form factors from space to time-like region

Space-like and time-like are related by dispersion theory!

PANDA physics overview

Dan

Exploring the hyperon sector

What happens if we replace one of the light quarks in the proton with one - or many heavier quark(s)?

Courtesy: Karin Schoenning

23

Hyperon dynamics

Strong production dynamics

- Relevant degrees of freedom?
- Strange *versus* charm sector?
- Role of spin?

PANDA is a hyperon factory!

EPJA57, 184 (2021), arXiv:2101.11877

** 90% C.L.

PANDA is a hyperon factory!

EPJA57, 184 (2021), arXiv:2101.11877

** 90% C.L.

1a

PANDA physics overview

DIVI, HITTHI, JPARC,

Dan

HYPERNUCLEI

1.00

2

ñ

Б

THE.

õ

5140

414

540

200

Tellin I

40

"Tour de Force"

PANDA@FAIR: "subatomic physics with antiprotons"

... covers particle, hadron, and nuclear aspects

- quark d.o.f.: from light to heavy
- gluon d.o.f.: glueballs, hybrids, etc.
- meson-baryon d.o.f.: B-B interaction in SU(3)-flavor

... is complementary and competitive

- unique antiproton facility
- versatile detector

... with excellent contributions from Sweden

... you are welcome to join the endeavour!