

The dynamics of QCD!

The dynamics of QCD!

Bound States and Dynamics of QCD

CHARM

STRANGE

LIGHT

Bound States and Dynamics of QCD

CHARM

STRANGE

LIGHT

BESIII, COMPASS, EIC, JLAB, ...

Nucleon Structure

Generalized parton distributions

Drell Yan process

Time-like form factors

Bound States and Dynamics of QCD

PANDA physics overview **CHARM STRANGE LIGHT** BELLEII, BESIII, COMPASS, BESIII, COMPASS, EIC, JLAB, ... JLAB, LHCb, ... Spectroscopy Nucleon Structure Hidden/open-charm states **Generalized parton distributions Gluon-rich QCD states Drell Yan process Light-meson systems Time-like form factors Bound States** and Dynamics of QCD

CHARM

STRANGE

Bound States

and Dynamics of QCD

LIGHT

BELLEII, BESIII, COMPASS, JLAB, LHCb, ...

Spectroscopy

Hidden/open-charm states

Gluon-rich QCD states

Light-meson systems

BESIII, COMPASS, EIC, JLAB, ...

Nucleon Structure

Generalized parton distributions

Drell Yan process

Time-like form factors

Strangeness

Strange baryon spectroscopy

Hyperon production & polarization

Hyperon transition form factors

BESIII, JLAB, JPARC, HADES, MAMI, ELSA, ...

CHARM ST

STRANGE

LIGHT

BELLEII, BESIII, COMPASS, JLAB, LHCb, ...

Spectroscopy

Hidden/open-charm states

Gluon-rich QCD states

Light-meson systems

BESIII, COMPASS, EIC, JLAB, ...

Nucleon Structure

Generalized parton distributions

Drell Yan process

Time-like form factors

Strangeness

Strange baryon spectroscopy

Hyperon production & polarization

Hyperon transition form factors

Bound States and Dynamics of QCD

Nuclear Physics

Hadrons in nuclei

Hyperon-nucleon dynamics

Hyper-atoms and nuclei

BESIII, JLAB, JPARC, HADES, MAMI, ELSA, ...

CBM, HYPHI, JPARC, ...

High Energy Storage Ring - precision antiprotons

MSV-HESR mode (Phase-1+2)

+RESR (Phase-3)

- Energy range: 1.5-15 GeV
- Stochastic cooling: dp/p=3x10⁻⁵
- Accumulation: 10¹⁰ antiprotons in 1000 s
 Luminosity up to 2x10³¹ cm⁻²s⁻¹

Today

Today

Today

p momentum [GeV/c]

Large mass-scale coverage

- center-of-mass energies from 2 to 5.5 GeV
- from light, strange, to charm-rich hadrons
- from quark/gluons to hadronic degrees of freedom

Large mass-scale coverage

- center-of-mass energies from 2 to 5.5 GeV
- from light, strange, to charm-rich hadrons
- from quark/gluons to hadronic degrees of freedom

High hadronic production rates

- charm+strange factory -> discovery by statistics!
- gluon-rich production -> potential for new exotics
- good perspectives already at "Day-One"!

Access to large spectrum of JPC states

- direct formation of all conventional JPC states
- large sensitivity to high spin states

Associated hadron-pair production

- access to hidden-strange/charm hadrons
- tagging possibilities
- near thresh.: good resolution and low background

Large mass-scale coverage

- center-of-mass energies from 2 to 5.5 GeV
- from light, strange, to charm-rich hadrons
- from quark/gluons to hadronic degrees of freedom

High hadronic production rates

- charm+strange factory -> discovery by statistics!
- gluon-rich production -> potential for new exotics
- good perspectives already at "Day-One"!

Access to large spectrum of JPC states

- direct formation of all conventional JPC states
- large sensitivity to high spin states

Associated hadron-pair production

- access to hidden-strange/charm hadrons
- tagging possibilities
- near thresh.: good resolution and low background

Systematic and precise tool to rigorously study the dynamics of QCD

Physics staging at PANDA

PANDA- the structure of the proton

Time-like Electromagnetic Form Factors

(lepton pair production) arXiv:1606.01118

Transition Distribution Amplitudes

(meson production) arXiv:1409.0865

Generalised Distribution Amplitudes

(time-like Compton, hard exclusive processes)

Transverse Parton Distribution Functions (Drell-Yan production)

Time-like Electromagnetic Form Factors
(lepton pair production)

arXiv:1606.01118

PANDA@Phase-1

EPJA 52 325 (2016)

Time-like Electromagnetic Form Factors (lepton pair production) arXiv:1606.01118

Phase-1

pp → e⁺e⁻ @1.5 GeV/c ~ 220/day pp → e⁺e⁻ @3.3 GeV/c ~ 10/day

Alaa Dbeyssi et al.

EPJA 52 325 (2016)

Time-like Electromagnetic Form Factors

(lepton pair production) arXiv:1606.01118

Phase-1

pp \rightarrow e⁺e⁻ @1.5 GeV/c ~ 220/day pp \rightarrow e⁺e⁻ @3.3 GeV/c ~ 10/day

pp $\rightarrow \mu^+\mu^-$ @1.5 GeV/c \sim 170/day

Alaa Dbeyssi et al.

EPJA 52 325 (2016)

Time-like Electromagnetic Form Factors

(lepton pair production)

arXiv:1606.01118

Day-1 activities:

- 1) Build database on multi-pion production in p+pbar as input to QCD calculations
- 2) *Demonstrate* the feasibility to identify di-lepton (+pi0) channels

Exploring the hyperon sector

What happens if
we replace one of the
light quarks in the proton
with one - or many heavier quark(s)?

u

u

proton

Courtesy: Karin Schoenning

d

Exploring the hyperon sector

Strong production dynamics

- Relevant degrees of freedom?
- Strange *versus* charm sector?
- Role of spin?

p_{beam} (GeV/c)	Reaction	σ (μb)	ε (%)	Rate @ 10 ³¹ cm ⁻² s ⁻¹	S/B	Events /day
1.64	$\bar{p}p \to \bar{\Lambda}\Lambda$	64.0	16.0	44 S ⁻¹	114	$3.8 \cdot 10^6$
1.77	$\bar{p}p \to \bar{\Sigma}^0 \Lambda$	10.9	5.3	2.4 S ⁻¹	>11**	207 000
6.0	$\bar{p}p \to \bar{\Sigma}^0 \Lambda$	20	6.1	5.0 S ⁻¹	21	432 000
4.6	$\bar{p}p \to \bar{\Xi}^+\Xi^-$	~1	8.2	0.3-1	274	26000
7.0	$\bar{p}p \to \bar{\Xi}^+\Xi^-$	~0.3	7.9	0.1 ⁻¹	65	8600

Courtesy: Karin Schoenning

** 90% C.L.

p _{beam} (GeV/c)	Reaction	σ (μb)	ε (%)	Rate @ 10 ³¹ cm ⁻² s ⁻¹	S/B	Events /day
1.64	$\bar{p}p \to \bar{\Lambda}\Lambda$	64.0	16.0	44 S ⁻¹	114	$3.8 \cdot 10^6$
1.77	$\bar{p}p \to \bar{\Sigma}^0 \Lambda$	10.9	5.3	2.4 S ⁻¹	>11**	207 000
6.0	$\bar{p}p \to \bar{\Sigma}^0 \Lambda$	20	6.1	5.0 S ⁻¹	21	432 000
4.6	$\bar{p}p \to \bar{\Xi}^+\Xi^-$	~1	8.2	0.3 ⁻¹	274	26000
7.0	$\bar{p}p o \bar{\Xi}^+\Xi^-$	~0.3	7.9	0.1-1	65	8600

Courtesy: Karin Schoenning

** 90% C.L.

Rich set of polarisation observables

(double) strange and charm baryons

Explore hyperon dynamics above 4 GeV

p_{beam} (GeV/c)	Reaction	σ (μb)	ε (%)	Rate @ 10 ³¹ cm ⁻² s ⁻¹	S/B	Events /day
1.64	$\bar{p}p o \bar{\Lambda}\Lambda$	64.0	16.0	44 S ⁻¹	114	$3.8 \cdot 10^6$
1.77	$\bar{p}p \to \bar{\Sigma}^0 \Lambda$	10.9	5.3	2.4 S ⁻¹	>11**	207 000
6.0	$\bar{p}p \to \bar{\Sigma}^0 \Lambda$	20	6.1	5.0 S ⁻¹	21	432 000
4.6	$\bar{p}p \to \bar{\Xi}^+\Xi^-$	~1	8.2	0.3 ⁻¹	274	26000
7.0	$\bar{p}p o \bar{\Xi}^+\Xi^-$	~0.3	7.9	O.1 ⁻¹	65	8600

Courtesy: Karin Schoenning

** 90% C.L.

Rich set of polarisation observables

(double) strange and charm baryons

Explore hyperon dynamics above 4 GeV

$\hat{x}_{\overline{\lambda}}$ $\hat{y}_{\overline{\lambda}}$ $\hat{z}_{\overline{\lambda}}$

Day-1:

Reproduce LEAR studies @1.64 GeV/c

Extend at 4 GeV/c and for |S|=2 hyperons

Phase-1:

Spin correlations in |S|=1,2

Extend to |S|=3 and charm hyperons

Hyperon spectroscopy

Map out the |S|=2 excited baryon spectrum

Hyperon spectroscopy

Albrecht Gillitzer et al.

Map out the |S|=2 excited baryon spectrum

Double hypernuclear spectroscopy

Courtesy: Josef Pochodzalla

 Ξ^{-} production $\overline{p}N \rightarrow \Xi^{-}\overline{\Xi}$

₽ O O O

HYPERNUCLEI

rescattering in primary target nucleus

deceleration in secondary target

capture of Ξ

atomic cascade of E

 $\Xi^-p \rightarrow \Lambda\Lambda$ conversion fragmentation \rightarrow excited $\Lambda\Lambda$ -nucleus

 γ -decay of $\Lambda\Lambda$ hypernuclei

weak pionic decay

 Ξ^{-} production $\overline{p}N \rightarrow \Xi^{-}\overline{\Xi}$

HYPERNUCLEI

rescattering in primary target nucleus

deceleration in secondary target

capture of Ξ

atomic cascade of E

 $\Xi^-p \rightarrow \Lambda\Lambda$ conversion fragmentation \rightarrow excited $\Lambda\Lambda$ -nucleus

 γ -decay of $\Lambda\Lambda$ hypernuclei

weak pionic decay

-2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5

-x [cm]

Double hypernuclear spectroscopy

Antihyperons in nuclei

Josef Pochodzalla et al.

Antiprotons sensitive tool to study antihyperon potential in nuclei!!!

Exploit abundantly produced hyperonantihyperon pairs near threshold

Benchmark data to test theoretical concepts to describe dynamics of (anti)hyperons in heavy-ion collisions

Important first step towards the |S|=2 hypernuclei program of PANDA

-0.5

Longitudinal Asymmetry

PANDA, NPA954, 323 (2016)

panda

Antihyperons in nuclei

Josef Pochodzalla et al.

Antiprotons sensitive tool to study antihyperon potential in nuclei!!!

Exploit abundantly produced hyperonantihyperon pairs near threshold

Benchmark data to test theoretical concepts to describe dynamics of (anti)hyperons in heavy-ion collisions

Important first step towards the |S|=2 hypernuclei program of PANDA

-0.5

Longitudinal Asymmetry

PANDA, NPA954, 323 (2016)

Charmonium-like particles - terra incognita

Charmonium-like particles - terra incognita

Day-1:

Exploratory search of new Z states using direct formation in pbar-n

Line-scan proof-of-principle with narrow conventional charmonium

Phase-1:

Line-scan of "exotic" candidates, such as X(3872)

Search for high-spin states with hidden-charm

pan da

Glueball searches in light-meson sector

Marc Pelizaeus et al.

Jetset (1998):

- fine scan around 2230 MeV
- cross section 100x larger than expected from OZI
- large gluonic component? LQCD: tensor glueball?

PANDA (2026):

- scan above 2.25 GeV: terra incognita
- 5x10⁴ reconstructed events/day at L=10³¹ cm⁻²s⁻¹
- physics studies at reduced luminosities feasible

p̄p→ΦΦ Cross Section

Jetset, Phys. Rev. D 57, 5370 (1998)

Glueball searches in light-meson sector

Marc Pelizaeus et al.

Jetset (1998):

- fine scan around 2230 MeV
- cross section 100x larger than expected from OZI
- large gluonic component? LQCD: tensor glueball?

PANDA (2025):

- scan above 2.25 GeV: terra incognita
- 5x10⁴ reconstructed events/day at L=10³¹ cm⁻²s⁻¹
- physics studies at reduced luminosities feasible

Iman Keshk (RUB), preliminary

Physics with PANDA at "Day-1"

Flagship studies:

- Strangeness (|S|=1,2) production in pbar-p and pbar-A.
- Spectroscopy in light-meson sector: search for gluon-rich matter.

Feasibility studies with discovery potential:

- |S|=2 baryon spectroscopy.
- Search for new unconventional hidden-charm states.

Development studies:

- Database on multi-pion production: tune QCD models for electromagnetic form factor studies etc..
- Line-scan performance studies on conventional hidden-charm states.

... as a first step of phase-1