

Future Physics with PANDA at FAIR

Karin Schönning, Uppsala University

Talk at the Worksshop on Emergence of Hadron Mass November 30th- December 4th 2020

Outline

- Objective
- PANDA at FAIR
- PANDA Physics Pillars:
 - Nucleon Structure
 - Strangeness Physics
 - Charm and Exotics
 - Hadrons in Nuclei
- Summary

Virtues of low-energy antiprotons

- Annihilations provide a *gluon-rich* environment.
- All neutral, hidden-flavour, meson-like states accessible in *formation*.
- Multi-strange and charmed $\overline{Y}Y$ final states in <u>2-body production</u>.
- *Time-like* structure observables with electron and muon "probes".
- Provide secondary hyperons that can form *hypernuclei*.

Facility for Antiproton and Ion Research (FAIR)

- Anti-protons within
 - $1.5 < p_{beam} < 15 \text{ GeV/c}$
- Internal targets
 - Cluster jet and pellet $(\bar{p}p)$
 - Foils $(\bar{p}A)$

- Luminosity:
 - Design $\sim 2 \cdot 10^{32} \text{ cm}^{-2} \text{s}^{-1}$
 - Phase One $\sim 10^{31}$ cm⁻²s⁻¹

AMBER vs PANDA

• Time:

- AMBER 2022
- PANDA ~2025.

• Antiproton **momentum** range:

- AMBER p_{beam} = 12-20 GeV/c
- PANDA p_{beam} = 1.5-15 GeV/c

• $\bar{p}p$ luminosity:

- AMBER L = 10^{30} cm⁻¹s⁻¹
- PANDA Phase One: $L = 10^{31} \text{cm}^{-1}\text{s}^{-1}$, Phase Three $L = 2 \cdot 10^{32} \text{cm}^{-1}\text{s}^{-1}$
- Longitudinal **interaction** region:
 - AMBER 40 cm
 - PANDA Phase One: ~15 mm, Phase Two/Three:~2 mm

AMBER vs PANDA

AMBER and PANDA largely

complementary in time, momentum,

luminosity and interaction volume

• Time:

- AMBER 2022
- PANDA ~2025.

• Antiproton **momentum** range:

- AMBER p_{beam} = 12-20 GeV/c
- PANDA p_{beam} = 1.5-15 GeV/c

• $\bar{p}p$ luminosity:

- AMBER L = 10^{30} cm⁻¹s⁻¹
- PANDA Phase One: $L = 10^{31} \text{cm}^{-1}\text{s}^{-1}$, Phase Three $L = 2 \cdot 10^{32} \text{cm}^{-1}\text{s}^{-1}$
- Longitudinal **interaction** region:
 - AMBER 40 cm
 - PANDA Phase One: ~15 mm, Phase Two/Three:~2 mm

PANDA – full setup

UNIVERSITET

PANDA – Phase One setup

Physics Programme

NUCLEON STRUCTURE

 \bar{p}

р

 e^-/μ^-

Parton Distribution Amplitudes

Electromagnetic Form Factors

* arXiv [nucl-ex]: 2010.0696

Electromagnetic Form Factors

Prospects for Phase One:

- Integrated luminosity of 0.1 fb⁻¹
- Separation of G_E and G_M possible with better precision than before.
- Independent e and μ measurement: test of lepton universality

UPPSALA UNIVERSITET

Electromagnetic Form Factors

Long-term prospects^{*,**}:

- Improved statistical precision
- Measurements up to $28 (GeV/c)^2$ test onset of analyticity:

Space-like FF ≈ Time-like FF

Physics Programme

STRANGENESS PHYSICS

Main objectives:

- Structure and production dynamics of established states.
- Search for hitherto unknown states.
- Search for CP violation on hyperon decays.

Hyperon Spin Properties

- Accessible *e.g.* through $I(\cos\theta_p) = N(1+\alpha P_A \cos\theta_p)$
 - α decay asymmetry \rightarrow searches for CP violation
 - P_A production related.

Advantages of PANDA

- Measured cross sections of ground-state hyperons in $\bar{p}p \rightarrow \bar{Y}Y$ 1-100 µb*.
- Excited hyperon cross sections should to be similar to those of ground-states**.

→ Large expected production rates!

* E. Klempt *et al.*, Phys. Rept. 368 (2002) 119-316 **V. Flaminio *et al.*, CERN-HERA 84-01

Hyperon prospects with PANDA

New simulation studies of single- and double-strange hyperons*:

- Exclusive measurements of $- \bar{p}p \rightarrow \bar{\Lambda}\Lambda, \Lambda \rightarrow p\pi^{-}, \bar{\Lambda} \rightarrow \bar{p}\pi^{+}.$ * By W. Ikegami-Andersson (PhD thesis, Uppsala 2020) and G. Perez Andrade (master thesis, Uppsala 2019)
 - $\ \bar{p}p \to \bar{\Sigma}^0 \Lambda, \Lambda \to p\pi^-, \bar{\Sigma}^0 \to \bar{\Lambda}\gamma, \bar{\Lambda} \to \bar{p}\pi^+.$
 - $\bar{p}p \to \bar{\Xi}^+ \Xi^-, \Xi^- \to \Lambda \pi^-, \Lambda \to p\pi^-, \bar{\Xi}^+ \to \bar{\Lambda} \pi^+, \bar{\Lambda} \to \bar{p}\pi^+.$
- Ideal pattern recognition and PID
- Background using Dual Parton Model

p _{beam} (GeV/c)	Reaction	σ (μb)	ε (%)	Rate @ 10 ³¹ cm ⁻² s ⁻¹	S/B	Events /day
1.64	$\bar{p}p ightarrow \bar{\Lambda}\Lambda$	64.0	16.0	44 S ⁻¹	114	3.8·10 ⁶
1.77	$\bar{p}p \to \bar{\Sigma}^0 \Lambda$	10.9	5.3	2.4 S ⁻¹	>11**	207 000
6.0	$\bar{p}p ightarrow \bar{\Sigma}^0 \Lambda$	20	6.1	5.0 S ⁻¹	21	432 000
4.6	$\bar{p}p \rightarrow \bar{\Xi}^+ \Xi^-$	~1	8.2	0.3-1	274	26000
7.0	$\bar{p}p \rightarrow \bar{\Xi}^+ \Xi^-$	~0.3	7.9	0.1-1	65	8600
						** 90% C.L

Hyperon prospects with PANDA

New simulation studies of single- and double-strange hyperons*:

- Exclusive measurements of $-\bar{p}p \rightarrow \bar{\Lambda}\Lambda, \Lambda \rightarrow p\pi^{-}, \bar{\Lambda} \rightarrow \bar{p}\pi^{+}.$ $-\bar{p}p \rightarrow \bar{\Sigma}^{0}\Lambda, \Lambda \rightarrow p\pi^{-}, \bar{\Sigma}^{0} \rightarrow \bar{\Lambda}\gamma, \bar{\Lambda} \rightarrow \bar{p}\pi^{+}.$ * By W. Ikegami-Andersson (PhD thesis, Uppsala 2020) and G. Perez Andrade (master thesis, Uppsala 2019)
 - $\bar{p}p \to \bar{\Xi}^+ \Xi^-, \Xi^- \to \Lambda \pi^-, \Lambda \to p\pi^-, \bar{\Xi}^+ \to \bar{\Lambda}\pi^+, \bar{\Lambda} \to \bar{p}\pi^+.$
- Ideal pattern recognition and PID
- Background using Dual Parton Model

p_{beam} (GeV)	/c)	Reaction	σ (μb)	ε (%)	Rate @ 10 ³¹ cm ⁻² s ⁻¹	S/B	Events /day		
1.64		$\bar{n}n \to \bar{\Lambda}\Lambda$	64.0	16.0	44 S ⁻¹	114	3.8·10 ⁶		
1.77	PANDA will be a hyperon factory already during Phase One!								
6.0									
4.6	With full luminosity, the rate will be ~20 times larger!								
7.0		L L	_				8600		
							** 90% C.L		

Hyperon Prospects with PANDA

Spin observables in production of single- and multistrange hyperons*

* arXiv[hep-ex]:2009.11582

Hyperon Spectroscopy

How do quarks form baryons?

- Forces?
- Degrees of freedom?

Symmetric quark model

Quark - diquark

Molecule / hadronic d.o.f.

Hyperon spectroscopy

How do the features of the light- and single strange baryon spectrum carry over to the multi-strange sector?

Feasibility study of $\bar{p}p \rightarrow \bar{\Xi}^+ \Lambda K^- + c.c.$

- Simplified PANDA MC framework
- p_{beam} = 4.6 GeV/c
- $\sigma = 1 \ \mu b \ and \ L = 10^{31} \ cm^{-2}s^{-1}$
- **Results:***
 - Efficiency ~5.5 % , S/B ~ 20
 - ~38000 exclusive $\overline{\Xi}^+ \Lambda K^- + c.c.$ events / day

р

* J. Pütz, PhD Thesis, Bonn University (2020)

π

p

D

 π^{*}

зa

Physics Programme

CHARM AND EXOTICS

UPPSALA UNIVERSITET

Ordinary versus Exotic matter

UNIVERSITET

Charm and exotics

- Experimental classification:
 - Spin-exotic quantum numbers *J*^{PC}
 - Production mechanism
 - Precision measurement of properties

AMBER

BESIII, Belle II

PANDA, AMBER

Experimental classification:

Production mechanism

Spin-exotic quantum numbers *J*^{PC}

Precision measurement of properties

Charm and exotics

Spectroscopy with PANDA:

Light hadrons: → Large data samples for PWA Open and hidden charm: → High spin states accessible

AMBER

BESIII, Belle II

PANDA, AMBER

UNIVERSITET

Charm and exotics

- Experimental classification:
 - Spin-exotic quantum numbers *J*^{PC}
 - Production mechanism
 Gluon-rich environment
 - Precision measurement of properties

AMBER

BESIII, Belle II

PANDA, AMBER

UPPSALA UNIVERSITET

Charm and exotics

- Experimental classification:
 - Spin-exotic quantum numbers *J*^{PC}
 - Production mechanism

– Precision measurement of properties

Let's have a closer look.

AMBER

BESIII, Belle II

PANDA, AMBER

Charmonium precision studies

- Many narrow charmonium resonances above $D\overline{D}$ threshold
 - The discovery of the X(3872) started a new era*
 - Inconsistent with quark model predictions**

Credit: LHCb, Phys.Rev. D 102 (2020) 9, 092005

Charmonium precision studies

- Line-shape sensitive to underlying structure*.
 - Bound / virtual states distinguished through the Flatté parameter E_f .
- Can be precisely measured in formation.
 - e^+e^- annihilation: only states with $J^{PC} = 1^{--}$ accessible.
 - $\bar{p}p$ annihilation: all " $q\bar{q}$ " like J^{PC} accessible.

Example: X(3872)

- Recent LHCb measurement*: Breit-Wigner and Flatté line-shape equally probable.
 ⁶⁰ PANDA
- Recent PANDA simulation study** [≅] 50
 - $\bar{p}p \to X(3872) \to J/\Psi \pi^+ \pi^-.$
 - 40 scan points á 2 days.
 - Different scenarios for
 - » cross section
 - » Luminosity
 - » B-W width
 - » Flatté parameter E_f
 - Sensitive to widths > 40-110 keV.
 - Possible to distinguish bound from virtual state through direct line-shape measurement.

* Phys. Rev. D 76, 034007 (2007) **Eur. Phys. J A 55, 42 (2019).

Physics Programme

HADRONS IN NUCLEI

Hadrons in Nuclei

Multi-baryon interactions crucial to understand macroscopic systems such as neutron stars.

In PANDA, these interactions can be studied in*

- Antihyperons in nuclei
- Hyperatom spectroscopy
- Hypernuclear spectroscopy

Nucl. Phys. A 954, 323 (2016)

Hyperatoms and hypernuclei

Details in Nucl. Phys. A 954 (2018) 323.

Hyperatoms and hypernuclei

- Large $\overline{Y}Y$ production rates.
 - Opportunity for multi-strange physics.
- Secondary target.
- Germanium detector array for γ-spectroscopy.

Summary

- PANDA is a next-generation antiproton facility for hadron and nuclear physics.
- The physics programme consists of four pillars:
 - Nucleon structure
 - Strangeness physics
 - Charm and exotics
 - Hadrons in nuclei
- PANDA and AMBER are complementary in time, beam momentum, luminosity and interaction volume.

Thanks to:

Alaa Dbeyssi, Jennifer Pütz, Tobias Stockmans, Johan Messchendorp and Christoph Hanhart

CP violation in hyperon decays

- CP violation in SM insufficient to explain matter-antimatter asymmetry.
- CP violation beyond SM never observed for baryons.
- The $\bar{p}p \rightarrow \bar{Y}Y$ process suitable for CP measurements:
 - Clean, no mixing.
 - Symmetric particle antiparticle conditions.

• If CP valid,
$$\alpha = -\overline{\alpha}$$
 i.e. $A_{CP} = \frac{\alpha + \overline{\alpha}}{\alpha - \overline{\alpha}} = 0.0000 \dots$

Anti-hyperons in nuclei

- Antibaryon potential in nuclei:
 - Discrepancy theory/data for antiprotons in nuclei.
 - (Anti-) strangeness sector experimentally unknown.*
- Advantage of PANDA:
 - Large production cross sections for $\overline{Y}Y$.

 \bar{p}

Transition Distributions Amplitides

Parton Distribution Amplitudes PANDA: low energy Drell-Yan AMBER: high energy Drell-Yan

at high energies'