Challenges in Instrumentation

at the Fand a Experiment

Hadron 2013 Conference, Nara, November 8th 2013 Lars Schmitt, FAIR Darmstadt

- Antiprotons at FAIR
- PANDA Overview
- Selected Highlights
- Timeline and Conclusions

Facility for Antiproton and Ion Research

Four pillars of research at FAIR

- Applied, plasma and atomic physics, biophysics (APPA)
- Nuclear structure with RIB from Super-FRS (NUSTAR)
- Heavy ion physics at high baryon density (CBM)
- Hadron and nuclear physics with antiprotons (PANDA)

Antiprotons in FAIR

- Proton Linac 70 MeV
- Accelerate p in SIS100 to 30 GeV/c
- Produce p on Cu target
- Collect in CR, fast cooling
- Accumulate in RESR, slow cooling
- Start version: accumulate in HESR
 - \rightarrow 10x lower luminosity
- Store in HESR and use in PANDA

High Energy Storage Ring

Challenges at PANDA

PANDA Overview

Challenges at PANDA

Physics Goals of PANDA

Hadron Spectroscopy

Experimental Goals: mass, width & quantum numbers J^{PC} of resonances

Charm Hadrons: charmonia, D-mesons, charm baryons
→ Understand new XYZ states, D (2317) and others

Exotic QCD States: glueballs, hybrids, multi-quarks

Spectroscopy with Antiprotons:

Production of states of all quantum numbers Resonance scanning with high resolution

Physics Goals of PANDA

Hadron Spectroscopy

Experimental Goals: mass, width & quantum numbers J^{PC} of resonances

Charm Hadrons: charmonia, D-mesons, charm baryons

→ Understand new XYZ states, D_s(2317) and others

Exotic QCD States: glueballs, hybrids, multi-quarks **Spectroscopy with Antiprotons**:

Production of states of all quantum numbers Resonance scanning with high resolution

Hadron Structure
 Generalized Parton Distributions
 → Formfactors and structure functions, L_a

Timelike Nucleon Formfactors Drell-Yan Process

Physics Goals of PANDA

Hadron Spectroscopy

Experimental Goals: mass, width & quantum numbers J^{PC} of resonances

Charm Hadrons: charmonia, D-mesons, charm baryons

→ Understand new XYZ states, D_s(2317) and others

Exotic QCD States: glueballs, hybrids, multi-quarks **Spectroscopy with Antiprotons**:

Production of states of all quantum numbers Resonance scanning with high resolution

Hadron Structure Generalized Parton Distributions

 \rightarrow Formfactors and structure functions, L_a

Timelike Nucleon Formfactors Drell-Yan Process

Nuclear Physics

Hypernuclei: Production of double Λ-hypernuclei
 γ-spectroscopy of hypernuclei, YY interaction
 Hadrons in Nuclear Medium

TARGET SPECTROMETER FORWARD SPECTROMETER

Challenges at PANDA

TARGET SPECTROMETER FORWARD SPECTROMETER

Straw Tube Trackers

 Cylindrical central tracker, 27 layers Planar forward tracker, 6x4 planes Al mylar tubes, 27 µm walls, 1 cm Ø ArCO, at 1 bar overpressure gives stability • Low mass: 0.05% X, per layer

Straw Chambers

Micro Vertex

Hadron 2013, Nov 8 2013

Central

Tracker

Challenges at PANDA

Challenges at PANDA

TARGET SPECTROMETER FORWARD SPECTROMETER

Modified Hypernuclear Setup

Primary retractable wire/foil target

- Secondary active target to capture Ξ and track products with Si strips HP Ge detector for γ-spectroscopy
- Mod. central tracker and beam pipe

Selected Highlights

PANDA DIRC Detectors

Detection of Internally Reflected Cherenkov light

Challenges at PANDA

PANDA DIRC Detectors

Detection of Internally Reflected Cherenkov light

PANDA DIRC Detectors

Detection of Internally Reflected Cherenkov light

DIRC Challenges and Progress

Radiator production and QA

- BABAR-DIRC bars polished to 5 Å rms, PANDA needs ~15 Å rms
- Candidates for synthetic fused silica material (Heraeus, Corning)
- Laser test stand to measure transmission and reflectivity

Photosensors for DIRCs

- Single photon sensitivity, low dark count rate, high PDE, fast timing: σ(TTS) ≈ 100 ps, operation in magnetic field, few mm position resolution, high rates up to 2 MHz/cm²
- Long lifetime: 4-10 C/cm² per year at 10⁶ gain (Barrel: 0.5 C/cm²/yr)
- For long time no sensor matched all criteria, Most promising candidate: MCP PMTs with enhanced lifetime

DIRC Prototyping

- Testbeams at GSI, CERN and DESY
- Radiator characterisation
- Electronics developments

~		
	V	

-(/IK

Electromagnetic Calorimeters

PANDA PWO Crystals

- PWO is dense and fast
- Low γ threshold is a challenge
- Increase light yield:
 - improved PWO II (2xCMS)
 - operation at -25°C (4xCMS)
- Challenges:
 - temperature stable to 0.1°C
 - control radiation damage
 - low noise electronics
- Delivery of crystals started

Electromagnetic Calorimeters

PANDA PWO Crystals

- PWO is dense and fast
- Low γ threshold is a challenge
- Increase light yield:
 - improved PWO II (2xCMS)
 - operation at -25°C (4xCMS)
- Challenges:
 - temperature stable to 0.1°C
 - control radiation damage
 - low noise electronics
- Delivery of crystals started

Large Area APDs

Challenges at PANDA

Electromagnetic Calorimeters

PANDA PWO Crystals

- PWO is dense and fast
- Low γ threshold is a challenge
- Increase light yield:
 - improved PWO II (2xCMS)
 - operation at -25°C (4xCMS)
- Challenges:
 - temperature stable to 0.1°C
 - control radiation damage
 - low noise electronics
- Delivery of crystals started

- LAAPD readout, 2x1cm²
- σ(E)/E~1.5%/√E + const.

Forward Endcap

- 4000 PWO crystals
- High occupancy in center
- LAAPD or VPT

Backward Endcap for hermeticity, 560 PWO crystals Forward EMC shashlyk behind dipole

Challenges at PANDA

Radiation Damage in PWO

- Radiation induced absorption
 → reduces light yield
- At RT recovery by annealing
- At -25°C annealing is slower
- PANDA crystals: control radiation induced absorption loss dk
- Recovery can be stimulated with light
 - Fast recovery with blue light
 - Slow recovery with IR light (online)

Challenges at PANDA

PANDA Data Acquisition

Self triggered readout

- Components:
 - Time distribution system
 - Intelligent frontends
 - Powerful compute nodes
 - High speed network
- Data Flow:
 - Data reduction
 - Local feature extraction
 - Data burst building
 - Event selection
 - Data logging after online reconstruction

Programmable Physics Machine

Summary

Present Status of PANDA

- Several systems head for TDR submission
- Preparation for Construction MoU
- Physics and detector topics

Timeline of PANDA

- Many TDRs to complete by end 2013
- Start of construction in 2014
- Start of preassembly at Jülich in 2016/17
- Mounting at FAIR in 2017/18

PANDA & FAIR start in hadron physics from end 2018

- Versatile physics machine with full detection capabilities
- PANDA will shed light on many of today's QCD puzzles
- Beyond PANDA further plans for spin physics at FAIR exist

Summary

Present Status of PANDA

- Several systems head for TDR submission
- Preparation for Construction MoU
- Physics and detector topics

Timeline of PANDA

- Many TDRs to complete by end 2013
- Start of construction in 2014
- Start of preassembly at Jülich in 2016/17
- Mounting at FAIR in 2017/18

PANDA & FAIR start in hadron physics from end 2018

- Versatile physics machine with full detection capabilities
- PANDA will shed light on many of today's QCD puzzles
- Beyond PANDA further plans for spin physics at FAIR exist

See plenary Fr 8/11, 15:30

by James Ritman

The PANDA Collaboration

More than 520 physicists from 67 institutions in 17 countries

Aligarh Muslim University U Basel **IHEP Beijing U** Bochum Magadh U, Bodh Gaya BARC Mumbai **IIT Bombay** U Bonn **IFIN-HH Bucharest** U & INFN Brescia U & INFN Catania NIT, Chandigarh AGH UST Cracow JU Cracow U Cracow **IFJ PAN Cracow GSI** Darmstadt

Karnatak U, Dharwad TU Dresden JINR Dubna U Edinburgh U Erlangen NWU Evanston U & INFN Ferrara FIAS Frankfurt LNF-INFN Frascati U & INFN Genova **U** Glasgow U Gießen Birla IT&S, Goa **KVI** Groningen Sadar Patel U, Gujart Gauhati U, Guwahati IIT Guwahati

IIT Indore Jülich CHP Saha INP. Kolkata **U** Katowice IMP Lanzhou **INFN** Legnaro **U** Lund U Mainz U Minsk **ITEP Moscow MPEI Moscow** TU München **U** Münster **BINP Novosibirsk IPN** Orsay U & INFN Pavia **IHEP** Protvino

PNPI Gatchina U of Silesia **U** Stockholm **KTH Stockholm** Suranree University South Gujarat U, Surat U & INFN Torino Politechnico di Torino U & INFN Trieste U Tübingen **TSL** Uppsala **U** Uppsala **U** Valencia SMI Vienna **SINS Warsaw TU Warsaw**

