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Abstract—In this work, the performance of a proposed al-
gorithm to search for clusters in the PANDA electromagnetic
calorimeter (EMC) in real time, which provides vital information
for the online event selection procedure, is discussed. Two
implementations will be discussed and compared to each other
and to a third, less suited algorithm (at least, as far as online
usage is concerned). After this, the implementation in the readout
hardware and concepts for the following data collection network
will be presented.

I. PANDA EXPERIMENT

new experiment, called PANDA (p ANnihilations at

DArmstadt), is being developed to perform precision
measurements in the energy range between 1.7 and
5.5 GeV/c?, where Quantum Chromodynamics becomes
non-perturbative for charmonium systems'. Over the last
years, several new charmonium-like hadrons were discovered,
called XYZ states [1], possibly consisting of more than
3 quarks. The PANDA spectrometer will be able to perform
precision measurements on the properties of these and other
predicted, as-of-yet unobserved, exotic states of matter, such
as glueballs, which can be directly populated through the
proton-antiproton interactions. However, the production cross
section for those states is five orders of magnitude lower than
that of conformal states [2]. It is furthermore assumed that
they exhibit a similar event topology, rendering a conventional
triggered readout unusable. To solve this, i.e. to make an event
selection, the experiment features an advanced, intelligent
readout system, that tries to reconstruct detected decays online.

The main focus will be on one subsystem of the detector, the
electromagnetic calorimeter (EMC). The device consists of
four parts: a Barrel, containing 11,360 PbWO, scintillation
crystals and a Backward and Forward Endcap, containing
524 and 3,856 crystals, respectively. The faces of the crystals
are approximately 2 cm X 2 cm. This is complemented
by a sampling (shashlik) calorimeter, placed in the forward
spectrometer a few meter downstream of the interaction point,
to cover very small polar angles.

To be able to perform the online event reconstruction,
complete information on the final-state particles is required.
Some common particles, like photons and electrons (and
positrons), are reconstructed using input from the EMC.
Three algorithms to perform these reconstructions will be
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evaluated. Two of these are eligible for implementation on
the online platform, providing vital information for the event
selection.

II. CLUSTER FINDING

Particles hitting the EMC crystals deposit their energy
by creating an electromagnetic particle shower. Momentum
conservation causes the shower to spread out over multiple
crystals, leading to the formation of clusters. To find the
four-momentum of the impinging particle, which is needed
to perform the online event reconstruction later on, it
suffices to add the individual hits in a cluster. However,
the high interaction rate, combined with the large variety
of intermediate states that can be directly formed, having
different decay times, may lead to pile-up and event mixing.
These features complicate the task of assigning hits to the
correct clusters considerably. As these features occur in the
time domain, the timestamp of each hit will play a key role in
disentangling the hits. For this reason, the simulation that has
been designed to reproduce this structure is called time-based
simulation.

The distribution of events through time follows a Poisson
distribution, with the mean time between two events
determined by the interaction rate. This creates a bunched
structure in the final data stream. The size of the bunches,
called timebunches, can be controlled by a time threshold.
Tuning this parameter can help put hits from a single (or few)
event(s) into a single timebunch, aiding the assignment of
hits to clusters. If multiple events are present in a timebunch,
their corresponding hits are likely located in different parts
of the detector, because apart from being forward boosted,
the decays are isotropic. There are multiple methods under
development to search for clusters in these timebunches,
but the main aim is to develop a method that can be easily
implemented to process the data online. As the data in the
EMC is produced at a rate of 80 GB/s, this algorithm needs
to consume as little resources as possible. These are the
methods under consideration:

1) Default Cluster-Finding: The currently implemented
version in the offline software package PandaRoot[3]
takes the stream of hits (pre-selected from the same pri-
mary interaction), and treats each new hit as a seperate
cluster, unless it neighbours2 to an existing one. In that

2As the time domain is important, in all references, “neighbour” means
close in space and time.
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Fig. 1: Comparison of the number of reconstructed events
for the three cluster-finding methods, obtained by taking all
combinations of two photon candidates.

case, the hit is absorbed in that cluster.

2) Online Cluster-Finding: The first proposed version to be
eligible for online usage loops over all pairs of hits in
the input stream to establish neighbour relations between
them. It then uses this information to merge them into
clusters. The input stream consists of complete collected
data from a given short time period, e.g. 40 us.

3) Distributed Cluster-Finding: The data concentration
stage already has full access to the calorimeter data for a
subsection of the EMC (about 128 crystals per device).
Making use of the advanced processing capabilities of
the readout hardware, it is possible to search for clusters
at this stage, reducing the load at later stages. The online
cluster-finding method will be used to identify clusters.
As clusters may be split at the edge of such a section,
the algorithm will make so-called preclusters containing
only minimal information on the location and size. In
a later stage, it will be checked if the preclusters need
to be merged using that information, and then the final
clusters will be formed.

These methods are tested using several datasets, generated
using the time-based framework. The first test case is
5000 instances of pp — 7y at an antiproton beam-momentum
of 1.5 GeV/c at an interaction rate of 20 MHz (which is the
worst-case scenario in terms of pile-up and event mixing).
As can be seen in Figure 1, they exhibit a comparable
performance in this case. The two methods for online cluster
finding show a slightly depleted peak, because the probability
to split a cluster into more smaller, low-energy clusters is
higher for those algorithms. This is partially corrected in
Distributed Cluster-Finding, because the use of radii for the
preclusters allows to recombine some of them.

As speed is key, also the processing time is compared. No
solid conclusions can be drawn, however, because this test
was performed on a CPU, and the final algorithm will run on
an FPGA3. The performance likely differs on such a device.
The Distributed Cluster-Finding algorithm is currently being
implemented on an FPGA in a protoype of the EMC readout
hardware (see III), but has not yet been tested. Hence, at this
moment, the comparison on CPUs is the best that can be done.

3A Field-Programmable Gate Array (FPGA) is an integrated circuit con-
taining an array of programmable logic blocks, connected by a collection of
reconfigurable interconnects.

Relative nr of events reconstructed: CPU Processing time (relative to Default):
Distributed: 23.9% 0.93 (0.05 + 0.88)

Fig. 2: Comparison between the three cluster-finding methods
for the h. decay channel. Events were generated at a rate of
200 kHz. (left) Relative number of succesfully reconstructed
h. mesons. (right) CPU processing time needed, relative to
the Default method.

To get a better idea of the yield and speed of the
algorithms, a more challenging dataset with 5000 events of
he = yne — y77n — 77 is generated. This channel was
chosen because it can be fully reconstructed using information
from the EMC only, and because it features a high photon
multiplicity. That increases the probability for pile-up, so the
recovery performance for those events can also be checked.
Figure 2 shows how the three algorithms stack out against
each other, in terms of yield (left) and processing time
(right). There is no huge difference in performance between
the methods; the Distributed method perform slightly worse
in terms of yield, but shows excellent time performance.
Because of these features, and because its concept fits the
architecture of the readout system, that method is chosen for
implementation.

III. READOUT

Recently, the distributed cluster-finding algorithm has been
implemented in a prototype of the readout hardware, specifi-
cally on a device that is called a Data Concentrator (DC). The
FPGA-based Data Concentrators are part of the readout chain,
taking data from the digitisers as input. They combine data
streams, sort the data, and provide synchronisation. The hard-
ware implementation enables testing the performance in the
online environment. Figure 3 shows the comparison between
the results of the algorithm for a simulation in PandaRooT
(revision 28955, with ROOT v5.34 and FairRoot v-15.11,
shown in blue) and a simulation of the implementation of the
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Fig. 3: Results for the mapped X-position, an arbitrary quantity
that is constructed by the Distributed Cluster-Finding algo-
rithm: For a simulation using PandaRoot (blue), and for a
VHDL simulation (green).
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Fig. 4: Graphical representation of the three conceptual options
for the Data Collection Network (see text).

same algorithm in VHDL (using Vivado v2015.3, shown in
green). As can be seen, the results agree. This implies that the
real implementation will perform the same as the simulation.

IV. DATA COLLECTION NETWORK

As stated before, the use of the distributed cluster-finding
algorithm fits in the design of the readout system of the
calorimeter. The question remains what is to be done with
the output produced by the Data Concentrators, which will
have done partial clustering on the subset of the data that
is available to them. This section describes three conceptual
options for the Data Collection Network. The options are
represented graphically in Figure 4.

1) The physical intelligent network | A network of Data
Concentrators combines data from two (or more) sub-
sets, covering an ever growing portion of the EMC,
until it is completely covered. In combining the sets,
the network re-sorts the input stream of preclusters, and
can perform advanced processing tasks like merging
neighbouring preclusters and removing low-energetic
clusters*.

o Advantages: The data is combined in small steps,
shrinking the total amount of data on the way.
At the endpoint of the network, less computational
resources will be needed.

o Disadvantages: The large number of small steps can
introduces a larger latency in the system, and some
work might be done twice. In addition, the nodes of
the network are required to have processing power.

2) The emulated intelligent network | A simple network
of switches collects the data. The data is fed to Com-
pute Nodes®, which internally combines datasets from

4That is, as long as they are not near the edge of the section of the EMC
under investigation, since in that case, they might be part of a bigger cluster.

SFPGA-based devices that are designed to perform high-level reconstruc-
tions in real time

the participating Data Concentrators, like the physical
intelligent network does.

o Advantages: The simplicity of the network makes it
much more cost-effective.

o Disadvantages: It is much more difficult and metic-
ulous to implement the merging algorithm.

3) The non-intelligent network | Like in the previous
option, a simple network of switches collects the data.
The data is fed to Compute Nodes, which take a times-
lice of data from the complete calorimeter and perform
the advanced processing tasks on that dataset, such as
precluster merging, removing low-energetic clusters, and
setting cluster properties.

o Advantages: The simple network is very cost-
effective.

e Disadvantages: The load at the endpoint of the
network becomes very heavy, because each node
will need to process data from the entire calorimeter.

V. CONCLUSION AND OUTLOOK

The use of a distributed cluster-finding algorithm reduces
the load and allows parallel preprocessing, which fits the
free data-streaming concept of the PANDA experiment. The
algorithm has already been implemented in an FPGA, and it
produces the same results as in the PandaRooT simulation.

Several concepts for the Data Collection Network are
being explored, but future investigations on the expected
data rates and resources of the candidate network nodes are
needed to provide a recommendation which option to use.
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