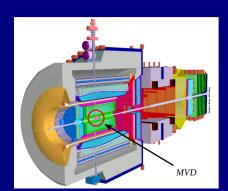
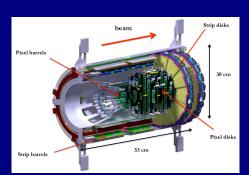
A 64 channels ASIC for the readout of the silicon strip detectors of the PANDA Micro-Vertex Detector

Daniela Calvo, Fabio Cossio, <u>Giovanni Mazza</u>, Marco Mignone, Richard Wheadon on behalf of the PANDA-MVD group

INFN sez. di Torino mazza@to.infn.it

September 20th 2022

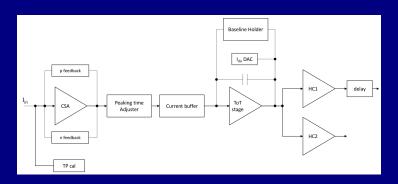

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 824093


Outline

- The PANDA experiment and its Micro Vertex Detector (MVD)
- Requirements for the readout architecture
- The ToASt project
 - Specifications
 - ToASt architecture
- Test results
- SEU test results
- Conclusions

The PANDA experiment

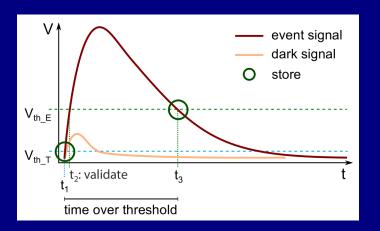
- Located at the new FAIR facility in Darmstadt
- $\bar{p} p$ and $\bar{p} nuclei$ annihilation reactions
- Fixed target (a target pipe intersects the beam pipe) and triggerless experiment



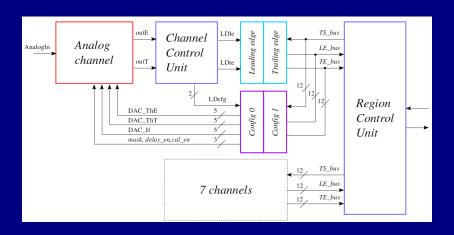
- Barrel region: 2 layers of Silicon Pixel
 Detectors (SPDs) + 2 of Silicon Strip
 Detectors
- Forward region : 4 SPDs disks, 2 SPDs + SSDs disks
- Double side SSDs

SSDs readout requirements

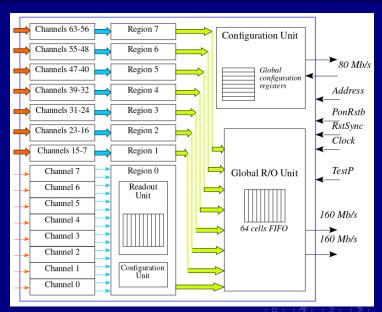
Specification	Min	Max	Unit
Channels per chip	64		
ToA (pk-pk)		6.25	ns
ToA (r.m.s.)		1.8	ns
Charge resolution	8		bits
Input charge	1	40	fC
Input capacitance	2	17	pF
Max rate per strip		40	kHz
Noise		1500	e ⁻
Preamp peaking time	50	≥ 100	ns
Reference clock		160	MHz
Power consumption		256	mW
Radiation tolerance		20	kGy
Chip dimensions	4.5 × 3.5 mm		mm ²
Pads position	On two sides only		


ToASt analog channel

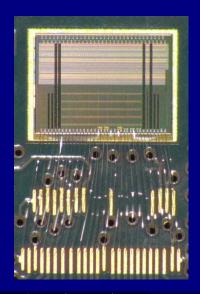
- CSA with selectable input signal polarity, gain $\approx 5 \text{ mV/fC}$
- Shaper with adjustable peaking time
- Current buffer
- Test pulse injection via integrated capacitor


- ToT stage with programmable discharge current
- Low frequency feedback to set baseline
- Two comparators with independent thresholds
- Local DACs for threshold and discharge current fine tuning

Time measurement


- Two thresholds : V_{thT} and V_{thE}
- Time measurement on $V_{\it thT}$ to minimize jitter
- Data validated on V_{thE} to minimize noise hits
- $ToT = t_3 t_1$
- Double threshold validation can be disabled

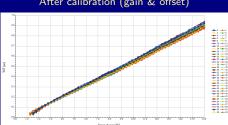
ToASt channel schematic



- Common time reference : 12 bits time stamp distributed to all channels
- Time stamp are Gray-encoded
- LE and TE registers latch time stamp at comparator rising/falling edges

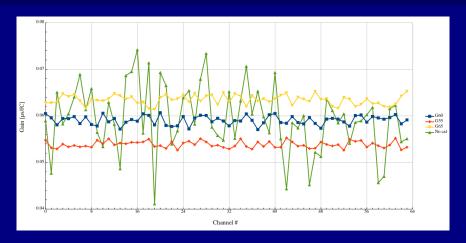
ToASt architecture

ToASt prototype

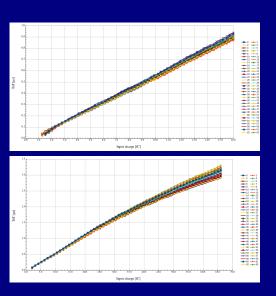


- CMOS UMC 0.11 μ m technology
- Digital-on-top design flow
- Die size : $3.24 \times 4.41 \text{ mm}^2$
- Left pads pitch (on two rows) : 63 μ m
- Right pads pitch : 90 μ m
- Three power domains: analog, digital, digital pads (all supply voltages at 1.2 V)
- One external analog reference $(V_{BG} = 600 \text{ mV})$
- SLVS driver/receivers
- Submitted on April 26th 2021
- Received on October 15th 2021

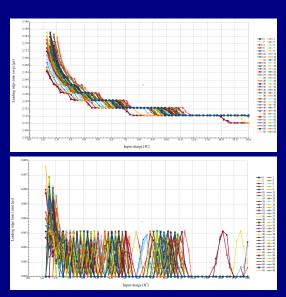
Measurement - transfer function



After calibration (gain & offset)


- No smoke at power-on
- Configuration interface ok
- Data transmission ok
- All 64 channels respond correctly to test pulse
- Fairly large gain spread
 - Expected : depends on a very small current
 - Channel level gain calibration implemented - gain spread reduce from 12% to 1.7%
 - Channel level offset calibration implemented - offset spread reduced from 30% to 5.8%
- Power consumption: 180 mW @1.2 V

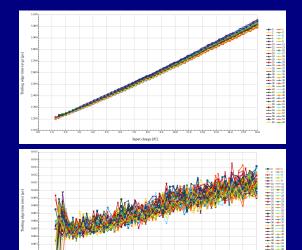
Measurement - gain calibration


- Calibration procedure :
 - For each channel, measure the transfer curve for each channel ToT Ibias DAC value
 - Select a reference gain
 - For each channel, select the DAC value providing the gain closest to the reference

Measurement - test pulse ranges

- Test pulse input with internally programmable amplitude via 6+1 bit internal DAC.
- Two test pulse ranges (the +1 bit):
 - Normal range : up to 16 fC, step 0.25 fC
 - Extended range : up to 66 fC, step 1.03 fC
- Non linearity (rms) <0.64% in the 2÷16 fC range

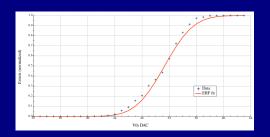
Measurement - leading edge

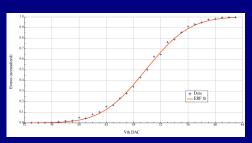


G. Mazza (INFN Torino)

- Test: test pulses synchronous with reset
- Leading egde time
 - Average (top)
 - rms (bottom)
- Events per channel: 100
- Time bin : 6.25 ns

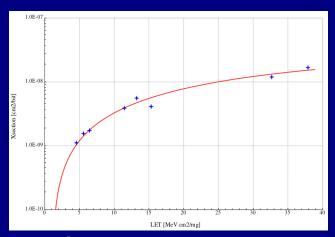
13 / 17


Measurement - trailing edge



Input charge [fC

- Test: test pulses synchronous with reset
- Trailing egde time
 - Average (top)
 - rms (bottom)
- Events per channel: 100
- Time bin: 6.25 ns


Measurement - noise

- S-curve obtained with channel threshold scan
 - Test pulse resolution and global threshold resolution too coarse
 - Baseline resolution gives similar results but with fewer points
- Conversion from DAC codes to input charge from simulations
- No input capacitance
- lacktriangle Average noise : 0.034 fC (211 e $^-$)
- Maximum noise : 0.05 fC (312 e⁻)

SEU test (@ INFN LNL SIRAD facility)

- Ion fluence $\sim 5 \cdot 10^7$ per ion
- Estimated cross section for 200 MeV protons : 3×10^{-15} cm²
- Hadron flux 5×10^6 hadrons/(cm $^2 \times$ s) $ightarrow 9.3 \times 10^{-2}$ errors/(h chip)
- lacktriangledown Only $1{ o}0$ errors observed triplication error found in the Verilog code

Conclusions

- A 64 channels ASIC, named ToASt, has been designed for the readout of the silicon strip detectors of the PANDA MicroVertex Detector
 - Each channel provides particle time of arrival (ToA) and energy deposited informations (via ToT)
 - The particle ToA and ToT and channel address are packed in a 32 bits data word and trasmitted via 1(2) 160 Mb/s serial link(s)
 - A slower (80 MS/s), bidirectional serial link is used for ASIC configuration
- ToASt is designed in a commercial CMOS 0.11 μ m technology
 - The technology is expected to be tolerant to total dose up to 50 kGy
 - The control logic has been designed with TMR techniques for SEU protection
- Test results :
 - Lab tests show that the ToASt performances are as expected
 - ToASt tests with detector just started
 - SEU tests show a critical point in the configuration register. The problem has been identified and will be corrected in the next version.

Spare slides

ToASt main characteristics.

- 64 input channels
- Time of Arrival (ToA) and Time over Threshold (ToT) measurements
- Master clock frequency: 160 MHz
- Region: groups of 8 channels with local FIFO
- Second level FIFO buffering for the 8 regions
- Two output serial links at 160 Mb/s
- Serial configuration protocol at 80 Mb/s
- Full SEU protection via Triple Modular Redundancy
- CMOS 0.11 μ m technology

Output data format

- Data output in 32 bits words over 160 Mb/s serial links
- It can be configured to use 1 or 2 links
- Frame : rollover time for the time stamp counter, i.e. 25.6 μ s at 160 MHz
- Data within a frame are packed within a frame header and a frame trailer
- Frame header contains chip id and frame number
- Frame trailers contains the number of valid samples and CRC

Packet type	Header	Data		
	2 bits	30 bits		
Data	11	Region[2:0] Channel[2:0] Le[11:0] Te[11:0]		
Header	10	10 ChipId[6:0] Reserved[12:0] FrameN[7:0]		
Trailer	01	01 DataCnt[11:0] CRC[15:0]		
Sync	00	00 1100 1100 1100 1100 1100 1101		

Radiation tolerance

- Total lonizing Dose: no special techniques have been adopted to increase the TID tolerance of ToASt. However, other studies [1] show that the technology is sufficiently radiation tolerant for the PANDA MVD application
- Single Event Effects: the digital logic has been protected via Triple Modular Redundancy using the TMRG tool [2]
 - Only channel and region registers are left non-triplicated to save power
 - Clock and reset nets are triplicated
 - Synchronous reset net
 - Minimum distance between triplicated DFF set to 20 μ m

- [1] E.Riceputi et al., "Total ionizing dose effects on CMOS devices in a 110 nm technology", IEEE PRIME 2017 proceedings
- [2] S.Kulis, "Single Event Effects mitigation with TMRG tool", TWEPP 2016 proceedings

Test for Single Event Upset tolerance

Test at the SIRAD facility at LNL

• May 23th-24th 2022

Beam time: 48 hours

Ion	Angle	Energy	LET	Fluence
		[MeV]	$[MeV \cdot cm^2/mg]$	[ions/cm ²]
О	0°	95.4	4.57	$6.31 \cdot 10^7$
F	0°	110.7	5.60	$1.01 \cdot 10^8$
F	30°	110.7	6.47	$3.03 \cdot 10^7$
Si	0°	141.6	11.47	6.80·10 ⁷
Si	30°	141.6	13.24	$4.11 \cdot 10^7$
CI	0°	162.7	15.33	4.99·10 ⁷
Br	0°	218.9	32.67	4.39·10 ⁷
Ag	0°	247.0	37.89	$1.52 \cdot 10^7$

Aim: estimate the SEU rate at LHC from ions cross section

(reference : M.Huhtinen and F.Faccio, Computational method to estimate Single Event Upset rates in an accelerator

environment, NIM A 450 (2000) pp 155-172)

Simulation results - event loss probability

Chip n.	Input	Output	Lost	N. of	Link occupancy	
	events	events	events	frames	Tx0	Tx1
0	208	205	3	29	4.82%	3.84%
1	135	133	2	30	3.69%	3.02%
2	192	190	2	29	4.75%	3.70%
3	169	163	6	30	4.18%	3.40%
4	164	161	3	30	4.27%	3.30%
5	149	142	7	30	3.81%	3.25%
6	140	132	8	30	3.70%	3.03%
7	102	100	2	29	3.27%	2.57%
8	179	178	1	30	4.78%	3.15%
9	162	159	3	30	4.37%	3.14%
10	207	196	11	30	5.01%	3.40%
11	166	165	1	29	4.60%	2.95%
Single driver						
10	207	196	11	30	6.83%	0%
11	166	165	1	29	6.01%	0%

- HDL simulations with data from PANDA physics simulations
- Barrel case (similar results with the forward case)

Lost events : 2.5%

Event loss due to FE dead time

