Hadron Form factors in space-like and time-like regions

Egle Tomasi-Gustafsson IRFU, SPhN-Saclay, and IN2P3 - IPN Orsay France

ICNFP, July 28 - August 6, 2014

On behalf of the

- Introduction
 - formalism
- The Experimental Status
 - The space-like region
 - Unpolarized experiments
 - Polarized experiments
 - Issues and open questions
 - The time-like region: the PANDA Contribution
 - > The unphysical region
 - The threshold region
 - The asymptotics
 - Interpretation(s)
 - Future prospects and Conclusions

Hadron Electromagnetic Form factors

The Nobel Prize in Physics 1961

"for his pioneering studies of electron scattering in atomic nuclei and for his thereby achieved discoveries concerning the stucture of the nucleons"

Robert Hofstadter 1/2 of the prize USA

Stanford University Stanford, CA, USA Characterize the internal structure of a particle (≠ point-like) Elastic form factors contain information on the hadron ground state.

In a P- and T-invariant theory, the EM structure of a particle of spin S is defined by 2S+1 form factors.

Neutron and proton form factors are different.

Deuteron: 2 structure functions, but 3 form factors.

Playground for theory and experiment at low q² probe the size of the nucleus, at high q² test QCD scaling

Electromagnetic Interaction

What about high order radiative corrections?

The electron vertex is known, γ_{μ}

The interaction is carried by a virtual photon of mass q²

The proton vertex is parametrized in terms of FFs: Pauli and Dirac F_1, F_2

$$\Gamma_{\mu} = \gamma_{\mu} F_{1}(q^{2}) + \frac{i\sigma_{\mu\nu} q^{\nu}}{2M} F_{2}(q^{2})$$

or in terms of Sachs FFs: $GE=F_1-\tau F_2$, $GM=F_1+F_2$, $\tau=-q^2/4M^2$

Hadron Electromagnetic Form factors

Hadron Electromagnetic Form factors

Cea **ICFNP**, 28-VII-2014

The Space-Like region: low Q^2

The Proton Radius

ICFNP, 28-VII-2014

Ś

High-Precision Determination of the Electric and Magnetic Form Factors of the Proton

J. C. Bernauer,^{1,*} P. Achenbach,¹ C. Ayerbe Gayoso,¹ R. Böhm,¹ D. Bosnar,² L. Debenjak,³ M. O. Distler,^{1,†} L. Doria,¹ A. Esser,¹ H. Fonvieille,⁴ J. M. Friedrich,⁵ J. Friedrich,¹ M. Gómez Rodríguez de la Paz,¹ M. Makek,² H. Merkel,¹ D. G. Middleton,¹ U. Müller,¹ L. Nungesser,¹ J. Pochodzalla,¹ M. Potokar,³ S. Sánchez Majos,¹ B. S. Schlimme,¹ S. Širca,^{6,3} Th. Walcher,¹ and M. Weinriefer¹

Mainz, A1 collaboration (1400 points)

- Radiative corrections
- Two photon exchange
- Coulomb corrections
 comments

MUSE Experiment

$Q^2 > 0.004 \text{ GeV}^2$

 $\langle r_E^2 \rangle^{1/2} = 0.879(5)_{\text{stat}}(4)_{\text{syst}}(2)_{\text{model}}(4)_{\text{group}}$ fm, $\langle r_M^2 \rangle^{1/2} = 0.777(13)_{\text{stat}}(9)_{\text{syst}}(5)_{\text{model}}(2)_{\text{group}}$ fm.

• Jlab CLAS *What about extrapolation to* $Q^2 \rightarrow 0?$

The Space-Like region

10

The Rosenbluth separation

ICFNP, 28-VII-2014

Proton Form Factors ... before

Dipole approximation: $G_D = (1+Q^2/0.71 \text{ GeV}^2)^{-2}$

Rosenbluth separation/ Polarization observables

V. Punjabi, M. Jones, C. Perdrisat et al, JLab-GEp collaboration

The polarization method (theory:1967)

SOVIET PHYSICS - DOKLADY

VOL. 13, NO. 6

DECEMBER, 1968

PHYSICS

POLARIZATION PHENOMENA IN ELECTRON SCATTERING BY PROTONS IN THE HIGH-ENERGY REGION

Academician A. I. Akhiezer* and M. P. Rekalo

Physicotechnical Institute, Academy of Sciences of the Ukrainian SSR Translated from Doklady Akademii Nauk SSSR, Vol. 180, No. 5, pp. 1081-1083, June, 1968 Original article submitted February 26,

$$s_{2} \frac{d\sigma}{d\Omega_{R}} = 4p_{2} \frac{(s \cdot q)}{1 + \tau} \Gamma(\theta, \epsilon_{1}) \left[\tau G_{M} (G_{M} + G_{E}) - \frac{1}{4\epsilon_{1}} G_{M} (G_{E} - \tau G_{M}) \right],$$

The polarization induces a term in the cross section proportional to $G_E G_M$ **Polarized beam and target or polarized beam and recoil proton polarization**

Polarization experiments

A.J.R. Puckett et al, PRL (2010), PRC (2012)

10.0

△ Christy

O Qattan

8.0

6.0

Issues

- Some models (IJL 73, Diquark, soliton..) predicted such behavior before the data appeared **BUT**
- Simultaneous description of the four nucleon form factors...
- ...in the space-like and in the time-like regions
- Consequences for the light ions description
- When pQCD starts to apply?
- Source of the discrepancy

The Time-Like region

16

Time-like observables: $|G_E|^2$ and $|G_M|^2$.

-The cross section for
$$\overline{p} + p \to e^+ + e^-$$
 (1 γ -exchange):

$$\frac{d\sigma}{d(\cos\theta)} = \frac{\pi\alpha^2}{8m^2\sqrt{\tau-1}} \left[\tau |G_M|^2 (1+\cos^2\theta) + |G_E|^2 \sin^2\theta\right]$$
 θ : angle between e^- and \overline{p} in cms.

A. Zichichi, S. M. Berman, N. Cabibbo, R. Gatto, Il Nuovo Cimento XXIV, 170 (1962)
B. Bilenkii, C. Giunti, V. Wataghin, Z. Phys. C 59, 475 (1993).
G. Gakh, E.T-G., Nucl. Phys. A761,120 (2005).

As in SL region:

- Dependence on q^2 contained in FFs
- Even dependence on $\cos^2\theta$ (1 γ exchange)
- No dependence on sign of FFs
- Enhancement of magnetic term

but TL form factors are complex!

The Experimental facilities

- Antiproton-proton colliders:
 - LEAR, FERMILAB, PANDA
- Electron -positron colliders
 - FENICE, VEPP, BABAR, BES
- Initial State Radiation
 - BABAR, BES

The Time-like region

MP. Rekalo, E.T-G., preprint DAPNIA-04-01, ArXiv:0810.4245.

Egle TOMASI-GUSTAFSSON

19

Antiproton facilities

Experiment	Years	Intensity	Momentum range	$\Delta p/p$
		\bar{p}/s	[GeV/c]	
CERN -LEAR	1983-1996	$2\cdot 10^6$	0.06-1.94	10^{-3}
FermiLab	1985-2011	$2\cdot 10^6$	<8.9	10^{-4}
45% polarized \bar{p}		10^{4}	(Low energy beams)	
PANDA	,	$2\cdot 10^7$	1.5 - 15	10^{-5}

Panda will have: - Better luminosity - Better beam momentum resolution - Better detector (coverage, PID,magnetic field..)

About cross sections ...

A.Dbeyssi amd E.T.-G, Prob Atomic Sci. Technol. 2012N1, 79 (2012).

The following slides concerning ongoing PANDA simulations :

- are extracted/derived from:
- A. Dbeyssi, PhD thesis Université Paris XI, 27-IX-2013
- they are considered
 'PANDA unofficial results'

Past its prime PANDA simulations are published in: - M.C. Mora Espi, PhD Mainz 2013 - M. Sudol et al., EPJA A44(2010)373

MC spectra...

A.Dbeyssi, PhD 2013

EMCE_{raw}/p vs. p

STT dE/dx vs p

Barrel DIRC Θ Cherenkov

ICFNP, 28-VII-2014

Egle TOMASI-GUSTAFSSON

23

From PHSP to physical angular distributions

A. Zichichi et al., Nuovo Cim. 24 (1962) 170 E. Tomasi-Gustafsson and M.P. Rekalo, Phys.Lett. B504 (2001) 291-295

Monte Carlo events, PHSP \times Weight: $1 + \mathcal{A} \cos^2 \theta$ Physical Monte Carlo events \times Efficiency $\epsilon(c)$ Physical reconstructed events

24

Individual determination of $|G_{E}|$ and $|G_{M}|$

 F. Iachello et al., Phys. Rev. C 69 (2004) 055204
 E. A. Kuraev et al., Phys. Lett. B 712, (2012)

 E. L. Lomon, Phys. Rev. C 66 (2002) 045501
 V. A. Matveev, S. J. Brodsky , D. V. Shirkov....

Radiative return (ISR)

$$e^+ + e^- \rightarrow p + \overline{p} + \gamma$$

$$\frac{d \sigma (e^+ e^- \rightarrow p \overline{p} \gamma)}{dm \ d \cos \theta} = \frac{2 m}{s} W (s, x, \theta) \sigma (e^+ e^- \rightarrow p \overline{p})(m), \qquad x = \frac{2 E_{\gamma}}{\sqrt{s}} = 1 - \frac{m^2}{s},$$
$$W (s, x, \theta) = \frac{\alpha}{\pi x} \left(\frac{2 - 2 x + x^2}{\sin^2 \theta} - \frac{x^2}{2} \right), \quad \theta \gg \frac{m_e}{\sqrt{s}}.$$

B. Aubert (BABAR Collaboration) Phys Rev. D73, 012005 (2006)

Angular distribution

The "unphysical region"

The reaction $p + \overline{p} \rightarrow e^+ + e^- + \pi^0$

ICFNP, 28-VII-2014

Egle TOMASI-GUSTAFSSON

29

Results with IJL FFs

to distinguish the reaction mechanism! G.I. Gakh, J. Boucher, E.T-G., Phys.Rev. C83 (2011)

The Time-like region: the threshold

Point-like form factors?

Sommerfeld Enhancement and Resummation Factors

Coulomb Factor C for S-wave only:

• Partial wave FF:
$$G_S = \frac{2G_M\sqrt{q^2/4M^2} + G_E}{3}$$
 $G_D = \frac{G_M\sqrt{q^2/4M^2} - G_E}{3}$

Cross section:
$$\sigma(q^2) = 2\pi \alpha^2 \beta \frac{4M^2}{(q^2)^2} \Big[\mathcal{C} |G_S(q^2)|^2 + 2|G_D(q^2)|^2 \Big]$$

$$\mathcal{C} = \mathcal{E} \times \mathcal{R}$$

• Enhancement factor: $\mathcal{E} = \pi \alpha / \beta$ • Step at threshold: $\sigma_{p\overline{p}}(4M_p^2) = \frac{\pi^2 \alpha^3}{2M^2} \int_{\mathcal{F}} |G_S^p(4M_p^2)|^2 = 0.85 |G_S^p(4M_p^2)|^2$ nb • Resummation factor: $\mathcal{R} = 1/[1 - \exp(-\pi \alpha / \beta)]$

Resummation factor: $\mathcal{R} = 1/[1 - \exp(-\pi \alpha/\beta)]$ Few MeV above threshold: $\mathcal{C} \simeq 1 \implies \sigma_{p\overline{p}}(q^2) \propto \beta |G_S^p(q^2)|^2$

S. Pacetti

BABAR 2013: $e^+e^- \rightarrow p\overline{p}$

 $\sigma_{pp}\left(nb\right)$ 0.5 $\circ L = 232 \text{ fb}^{-1}, \Delta W_{pp} = 23^*, 25 \text{ MeV}$ $OL = 469 \text{ fb}^{-1}, \Delta W_{pp} = 23^*, 25 \text{ MeV}$ $OL = 469 \text{ fb}^{-1}, \Delta W_{pp} = 3.5^*, 5 \text{ MeV}$ * first bin 1.85 1.9 1.95 2.12 2.05W_{pp} (GeV)

PRD73-012005, arXiv:13

The nucleon

3 valence quarks and a neutral sea of qq pairs

antisymmetric state of colored quarks

 $|p \rangle \sim \epsilon_{ijk} |u^{i}u^{j}d^{k} \rangle \\ |n \rangle \sim \epsilon_{ijk} |u^{i}d^{j}d^{k} \rangle$

Main assumption

Does not hold in the spatial center of the nucleon: the center of the nucleon *is electrically neutral,* due to strong gluonic field

E.A. Kuraev, E. T-G, A. Dbeyssi, Phys.Lett. B712 (2012) 240

Model: generalized form factors

E.A. Kuraev, E. T-G, A. Dbeyssi, Phys. Lett. B712 (2012) 240

Definition:

$$F(q^2) = \int_{\mathcal{D}} d^4 x e^{iq_{\mu}x^{\mu}} \rho(x), \ q_{\mu}x^{\mu} = q_0 t - \vec{q} \cdot \vec{x}$$

 $\rho(x) = \rho(\vec{x}, t)$ space-time distribution of the electric charge in the space-time volume \mathcal{D} .

In SL- Breit frame (zero energy transfer): $F(q^2) = \delta(q_0)F(Q^2), \ Q^2 = -(q_0^2 - \vec{q}^2) > 0.$

In TL-(CMS):
$$F(q^2) = \int_{\mathcal{D}} dt e^{i\sqrt{q^2t}} \int d^3 \vec{r} \rho(\vec{r}, t) = \int_{\mathcal{D}} dt e^{i\sqrt{q^2t}} Q(t),$$

 $Q(t)$: time evolution of the charge distribution
in the domain \mathcal{D} .

Proton Form Factors

The asymptotic region

Egle TOMASI-GUSTAFSSON

37

Proton form factors at large q²

E. T-G. and M. P. Rekalo, Phys. Lett. B 504, 291 (2001)

Phragmèn-Lindelöf theorem

$$\begin{split} \lim_{q^2 \to -\infty} F^{(SL)}(q^2) &= \lim_{q^2 \to \infty} F^{(TL)}(q^2) \\ space - like & time - like \\ (e^- + p \to e^- + p) & (e^+ + e^- \leftrightarrow \overline{p} + p) \end{split}$$

$$- \, F^{(TL)}(q^2) \,
ightarrow \, real, \, ext{if} \, q^2
ightarrow \infty$$

Applies to NN and NN Interaction (Pomeranchuk theorem) t=0 : not a QCD regime!

Analyticity Connection with QCD asymptotics?

Nucleon Form Factor Experiments

	Hall	Exp#	Title	Ee	Q _{max} ²
	A	E12-07-108	Precision Measurement of the Proton Elastic Cross Section at High Q ²	6.6 8.8 11	17,5 (14)
	A	E12-07-109	Large Acceptance Proton Form Factor Ratio Measurements at 13 and 15 (GeV/c) ² using Recoil Polarization Method	6.6 8.8 11	12(14)
	A	E12-09-019	Precision Measurement of the Neutron Magnetic Form Factor up to Q ² = 18.0 (GeV/c) ² by the Ratio Method	4.4 6.6 8.8 11	13.5 (18)
	A	E12-09-016	Measurement of the Neutron Electromagnetic Form Factor Ratio <i>Gⁿ_E / Gⁿ_M</i> at High <i>Q</i> ²	4.4 6.6 8.8	10.2
	В	E12-07-104	Measurement of the Neutron Magnetic Form Factor at High Q ² Using the Ratio Method on Deuterium	11	14
	С	E12-11-009	The Neutron Electric Form Factor at Q ² up to 7 (GeV/c) ² from the Reaction 2H(e,e'n)1H via Recoil Polarimetry	4.4 6.6 11	7
6) Elsa	Patrizia Ro	ssi ECT* Trento – February 18-22, 2013	9.	Jefferson La

INSTITUT DE PRYSIQUE MUCLÉN ORSAY

Conclusions

•<u>Large activity</u> both **Pand** a in Space and Time-like regions

•Unified models in SL and TL regions:

- describe proton, neutron, electric, magnetic FFs
- pointlike behavior at threshold?
- understand GE, GM(SL) < GE, GM(TL);
- •<u>To measure</u>
 - zero crossing of GE/GM in SL? 2γ ? Proton radius?
 - GE and GM separately in TL (PANDA)
 - complex FFs in TL region: polarization

VEPP-3

Novosibirsk

Σας ευχαριστώ για την προσοχή σας

The polarization method (exp: 2000)

Transferred polarization is:

 $\mathbf{D} = \mathbf{0}$

C. Perdrisat et al, JLab-GEp collaboration

$$\begin{aligned} \mathbf{P}_{n} &= 0 \\ \pm \mathbf{h} P_{t} &= \mp \mathbf{h} \, 2\sqrt{\tau(1+\tau)} \mathbf{G}_{E}^{p} \mathbf{G}_{M}^{p} \tan\left(\frac{\theta_{e}}{2}\right) / I_{0} \\ \pm \mathbf{h} P_{l} &= \pm \mathbf{h} (E_{e} + E_{e'}) (\mathbf{G}_{M}^{p})^{2} \sqrt{\tau(1+\tau)} \tan^{2}\left(\frac{\theta_{e}}{2}\right) / M / I_{0} \end{aligned}$$

Where,
$$h=|h|$$
 is the beam helicity $I_0 = (G^p_E(Q^2))^2 + rac{ au}{\epsilon}(G^p_M(Q^2))^2$

$$\implies \frac{G_E^p}{G_M^p} = -\frac{P_t}{P_l} \frac{E_e + E_{e'}}{2M} \tan\left(\frac{\theta_e}{2}\right)$$

The simultaneous measurement of P_t and P_l reduces the systematic errors

PID and kinematical Cuts

A. DBEYSSI ,PhD 2013

s [GeV ²]	5.4	8.2	13.9
Total PID prob.	>99%	>99%	>99.9%
Individual PID _i prob.	>5%	>5%	>6%
Number of fired crystals	>5	>5	>5
$(\theta + \theta')$ [CMS]	[178°-182°]	[178°-182°]	[175°-185°]
$ \phi - \phi' $	[178°-182°]	[178°-182°]	[175°-185°]
Invariant mass [GeV]	No cut	> 2.14 GeV	> 2.5 GeV
Background [Events]	0	0	0

• *PID --> probability for the detected particle to be identified as the signal.*

• PID information are taken from EMC, STT, DIRC and MVD subdetectors.

