

Status of Day-1 Experiment at HESR

Huagen Xu for the PANDA collaboration

28.07.2014

ICNFP 2014, Crete, Greece

1

- 1. Proposal of Day-1 experiment
- 2. Design, construction and test of recoil detector
- 3. Beam commissioning of recoil detector at COSY
- 4. Preliminary results of pp elastic scattering
- 5. Summary and outlook

PANDA luminosity group: Juelich and Mainz http://portal.kph.uni-mainz.de/panda-paluma/index.php/luminostiy-monitor.html

1.1 Introduction to PANDA luminosity monitor

- Goal of PANDA luminosity monitor
 - Integrated luminosity with ~3% absolute precision

- Concept
 - Low t elastic scattering
 - Coulomb interference region
 - Forward going antiprotons, 3<θ<8 mrad
 - 4-layer HV-MAPS telescope at Z~10m

HV-MAPS on Diamond

Retractable halfplanes

Two vacuum compartiments

Inner beampipe

p a n d a

1.2 Performance of PANDA luminosity monitor

ÜLICH

1.3 Proposal of Day-1 Experiment at HESR

- Coincidence (Forward & Recoil)
- Large range of t
 - Recoil arm only: 0.0008-0.1 GeV²
 - 0.0004-0.1 GeV² + Forward :

A large range of t can be achieved by coincidence measurement at HESR!

10⁴

Counts

10³ ⊨

0.0001

ICNFP 2014, Crete, Greece

0.1

Recoil Arm only

0.01

Recoil Arm + Forward

|t| (GeV²)

P0,P12,P34

Day-1 location

HESR

0.001

2.1 Sketch of Recoil Arm

Recoil arm will cover the entire range of the expected t-spectrum.

ICNFP 2014, Crete, Greece

2.2 Goals of Commissioning at COSY

- To validate the detector concept by measuring pp elastic scattering
- To answer the key questions
 - What is the minimum energy of recoil protons to be measured?
 e.g. 400 keV protons possible to be measured by recoil detector alone?
 - What precision of luminosity of PANDA could be expected?
 e.g. 3% of absolute precision feasible?

Hydrogen cluster target station

2.3 Chamber Design for Commissioning

- Proton beam maximum 3.7 GeV/c at COSY
- Expected t range at max recoil angle 13.6°

P (GeV/c)	t expected (GeV ²)
2.5	0.0008-0.0921
3.7	0.0008-0.1161

- Assessment of existing Hydrogen cluster target at ANKE target station
 - Density: 10E14 atoms/cm²
 - Thickness: ~1 mm by modifying collimate
 - Space: available for Day-1 chamber

ICNFP 2014, Crete, Greece

Existing Hydrogen cluster target is suitable for commissioning.

by F. Klehr

ZEA, Juelich

2.4 Setup for Laboratory Test

- Si(~12 MeV): 76.8x50x1 (mm³) (64 /1.2 mm pitch)
- Ge(~60 MeV): 80.4x50x5/11 (mm³) (67 /1.2 mm pitch)

Expected energy resolution: ~22.5 keV of Si and ~30 keV of Ge

2.4.1 Temperature Dependence

- Response of detectors at different temperature
 - Si:
 - ✓ Small leakage current below 250 K
 - Higher temperature higher amplitude but no significant improvement on resolution
 - Ge (typically working at 77-100K):
 - Leakage current increasing fast above 130 K
 - Amplitude and resolution benefit from higher temperature
- Energy resolution of ²⁴⁴Cm at 125 K
 - Si strips: <20 keV (FWHM)
 - Ge strips: <30 keV (FWHM)

Detector performance fulfills the design requirements.

ICNFP 2014, Crete, Greece

Detector chamber installed at ANKE target station for commissioning.

3.1 Online Plots from Commissioning

P = 3.2 GeV/c

Energy of recoil protons clearly observed.

ICNFP 2014, Crete, Greece

3.2 Data Acquired

 Data have been taken at 1.7 GeV/c, 2.5 GeV/c, 2.8 GeV/c and 3.2 GeV/c.

	Run1, 2013	Run2, 2013
Beam intensity	1E10 protons	2-3E10 protons
Data file size	27 GB @ P = 3.2 GeV/c 19 GB @ P = 1.7 GeV/c (1GB ~1M entries)	41 GB @ P = 3.2 GeV/c 53 GB @ P = 2.8 GeV/c 24 GB @ P = 2.5 GeV/c
Elastic events	$\sim 60\%$ of entries	$\sim 50\%$ of entries

 Schottky measurements have been performed at 2.5 GeV/c and 3.2 GeV/c

panda

4.1 Luminosity Determination

By Day-1 (online estimate)

Parameters	P = 3.2 GeV/c	P = 2.5 GeV/c
Elastic events on Ge5 (background incl.)	389900	314300
DAQ dead time factor	0.622	0.689
Integrated time, s	6279	6261.5
Cross section, mb	3.487±0.15	3.179±0.15
t range, GeV ²	0.0165-0.0571	0.0141-0.0488
Acceptance	0.785%	0.785%
Luminosity, cm ⁻² s ⁻¹	(3.647±0.157)E+30	(2.917±0.138)E+30

By Schottky measurement

Parameters	P = 3.2 GeV/c	P = 2.5 GeV/c	
Target thickness n_T , atoms/cm ²	8.867E+13	1.310E+14 ?	
Beam current n _B	2.711E+10	2.180E+10	~1.24
Initial beam frequency f_0 , Hz	1567975	1529797	
Luminosity $n_T * n_B * f_0$, cm ⁻² s ⁻¹	(3.769±0.169)E+30	(4.350±0.247)E+30	

4.2 Analysis: Clustering

Clustering algorithm implemented for energy reconstruction.

ICNFP 2014, Crete, Greece

ÜLICH

p a n)d a

4.3 Analysis: Energy vs Recoil Angle

Energy of recoil protons precisely reconstructed.

ICNFP 2014, Crete, Greece

LICH

Forward measurement is required for a coincidence.

ICNFP 2014, Crete, Greece

5 Summary and Outlook

- A recoil detector has been designed and constructed in order to validate the method of the Day-1 experiment at HESR.
- Laboratory tests prove that the recoil detector fulfills the requirements.
- Preliminary results of commissioning at COSY.
- Forward measurement is expected for a complete coincidence in order to suppress background.
- Data analysis for the construction of a full range of the t-spectrum.
- Determination of luminosity as well as forward elastic scattering parameters.

The Day-1 Experiment with full set-up will be performed as soon as the first antiproton beams are available at HESR!

Backup

2.3.2 Detector Energy Resolution

- Silicon strips: ~20 keV (FWHM) achieved
- Germanium strips: ~30 keV (FWHM) achieved

Ge#1

Ge#2

d a

2.3.3 Energy Calibration

- Silicon: dead layer < 0.1 µm
- Germanium: dead layer <1 µm

5.85 ×10

Required t-range

ICNEP 2014, Crete, Greece

Raw spectrum

After clustering

