

Introduction

- > Motivation, physics programme
- Advantage of anti-protons
- Resonance scan method

Hadron spectroscopy

- Exotic hadrons
- Open charm
- Charmonium-like exotics
- Baryon spectroscopy

Nucleon spin structure

- EM form factors
- GPDs, TDAs
- Drell-Yan

Summary & outlook

Recent Hot Topics

Hadron Spectroscopy

Nucleon Structure

unexpected, manifestly exotic!

proton spin $\frac{1}{2}$ not yet understood

Hadron Physics and QCD

- Why are there no free quarks?
- Are there other colour neutral objects?
- What is the structure of the nucleon?
- What are the spin degrees of freedom?

anti-Proton ANnihilation in DArmstadt p momentum [GeV/c] 0 10 12 2 15 4 6 8 Meson spectroscopy $\Omega \overline{\Omega}$ DD $\sqrt{c} \overline{\sqrt{c}}$ ຽັ້Ωີ $D_s \overline{D}_s$ light mesons charmonium ccqq pppp \succ exotic states: glue-balls, hybrids, nng,ssg ccg molecules / multi-quarks nng,ssg ccg (Anti-) Baryon production Nucleon structure ggg,gg Charm in nuclei ggg Strangeness physics cc light qq hypernuclei, **J/ψ, η**_c, χ_{cJ} $\pi, \rho, \omega, f_2, K, K^*$ \succ S = -2 nuclear system 2 3 5 6 1 4 mass [GeV/ c^2]

Frank Nerling

- Gluon rich process
- Gain ~2GeV in annihilation (low momentum transfer)
- B = 0 system
- Access to all fermion-antifermion quantum numbers (not in e+e-)
- Access to states of high spin J
- Precise mass resolution in formation reactions

Formation:

→ All J^{PC} allowed for (qq) accessible in $p\overline{p}$

Anti-Protons – Resonance Scan Method

- Cooled p
 beam: Excellent energy resolution!
- Production rate: Convolution of resonance and beam profile
- Principle has been proven to work ...

 $e^+e^- \rightarrow \psi' \rightarrow \gamma \chi_{1,2} \rightarrow \gamma (\gamma J / \psi) \rightarrow \gamma \gamma e^+ e^-$

 Invariant mass reconstruction depends on the detector resolution ≈ 10 MeV

Formation:

$$\overline{p}p \rightarrow \chi_{1,2} \rightarrow \gamma J / \psi \rightarrow \gamma e^+ e^-$$

- Resonance scan:
 - → mass resolution depends on the beam resolution

<mark>Χc</mark> └→ γ J/ψ <u>p</u>p - $\rightarrow \gamma e^+ e^-$

Production:

ī a n d a

$$e^+e^- \rightarrow \psi' \rightarrow \gamma \chi_{1,2} \rightarrow \gamma (\gamma J / \psi) \rightarrow \gamma \gamma e^+ e^- \tau_2$$

 Invariant mass reconstruction depends on the detector resolution $\approx 10 \text{ MeV}$

Formation:

$$\overline{p}p \rightarrow \chi_{1,2} \rightarrow \gamma \mathrm{J} / \psi \rightarrow \gamma e^+ e^-$$

- Resonance scan: ۲
 - \rightarrow mass resolution depends on the beam resolution

3

2

Resonance Scan Method -- an example: $\chi_{c1.2}$

Production:

ī a n d a

$$e^+e^- \rightarrow \psi' \rightarrow \gamma \chi_{1,2} \rightarrow \gamma (\gamma J / \psi) \rightarrow \gamma \gamma e^+ e^- \tau_2$$

 Invariant mass reconstruction depends on the detector resolution ≈ 10 MeV

Formation:

$$\overline{p}p \rightarrow \chi_{1,2} \rightarrow \gamma \mathrm{J} / \psi \rightarrow \gamma e^+ e^-$$

- Resonance scan:
 - → mass resolution depends on the beam resolution

E760/835@Fermilab ≈ 240 keV PANDA@FAIR ≈ 50 keV

NB: Interpretation of many states depends on width of states!

Gaiser et al., Phys. Rev. D34 (1986) 711: *CrystalBall (SLAC)*: $3512.3 \pm 4 \text{ MeV/c}^2$ Andreotti et al., Nucl. Phys. B717 (2005) 34-47: *E835 (Fermilab)*: $3510.641 \pm 0.074 \text{ MeV/c}^2$

dN (1% bins) (×10³

pp Production Cross Sections

Spectroscopy – Exotic Hadrons

Mesons and (Spin) Exotic States

Constituent quark model

- color neutral $q\overline{q}$ systems
- quantum numbers *I^G J^{PC}*
- $P = (-1)^{L+1}$ $C = (-1)^{L+S}$ $G = (-1)^{l+L+1}$
- J^{PC} multiplets: 0⁺⁺, 0⁻⁺, 1⁻⁻, 1⁺⁻, 1⁺⁺, 2⁺⁺, ...
- Forbidden: 0⁻⁻, 0⁺⁻, 1⁻⁺, 2⁺⁻, 3⁻⁺, ...

Three categories of exotics:

- Glueballs \rightarrow gg, ggg
- Hybrids \rightarrow (q \bar{q})g
- Molecules / multiquarks

 \rightarrow (qqq)(q \bar{q}), (q \bar{q})(q \bar{q}) or: qq $\bar{q}\bar{q}$, qqqq \bar{q}

→ The observation of exotic hadrons would be a confirmation of QCD

QCD: meson states beyond

Lattice Predictions

- Lattice QCD \rightarrow Predictions for masses/properties
- Current predictions for mesons, glueballs, hybrids

G. S. Bali, Int.J.Mod.Phys. A21 (2006) 5610-5617

• From LQCD calculations:

папп

Spin-exotic hybrid candidate $\tilde{\eta}_{C1}$ with m \approx 4.3GeV/c², J^{PC} = 1⁻⁺

• Exclusive reconstruction in two favoured channels:

• Production X-section assumed similar to $\overline{p}p \rightarrow \psi(2S)\eta$ (33pb) \rightarrow Need good calorimetry + good particle identification

$\bar{\mathbf{p}}\mathbf{p} \rightarrow \tilde{\mathbf{\eta}}_{c1}\mathbf{\eta} \rightarrow \chi_{c1}\pi^0\pi^0\mathbf{\eta}$

05/09/2013

$\overline{p}p \rightarrow \widetilde{\eta}_{c1}\eta \rightarrow D^0 \overline{D}{}^{0*}\eta$

- Simulation @ 15 GeV/c
 - > 200k signals + background, e.g. $\overline{p}p \rightarrow D^0 \overline{D}^0 * \pi^0$
 - 11C kinematic fit (mass constraints, 4C energy momentum)

Open charm: The D_s spectrum

- Qualitative agreement theory vs. experiment on D states – details however still open
- Many new D_J mesons (LHCb)
- Narrow states (2003): D_s*(2317) and D_s*(2416) still under discussion (and other broad states recently)
- Masses: Significantly lower than expected (quark potential model), and just below
 DK and D*K threshold
- Widths: Only upper limits
- Interpretation unclear: DK / D*K molecules, tetraquarks, chiral doublers, ...? Sensitive to width

Interpretation $\leftarrow \rightarrow$ Width of D_{s0}*(2317)

Different theoretical approaches, different interpretations	$\Gamma({ t D_{s0}}^{*}(extsf{2317})^{*} o extsf{D}_{s}\pi^{0})$ (keV)	
M. Nielsen, Phys. Lett. B 634, 35 (2006)	6 ± 2	
P. Colangelo and F. De Fazio, Phys. Lett. B 570, 180 (2003)	7 ± 1	
S. Godfrey, Phys. Lett. B 568, 254 (2003)	10Pure cs state	
Fayyazuddin and Riazuddin, Phys. Rev. D 69, 114008 (2004)	16	
W. A. Bardeen, E. J. Eichten and C. T. Hill, Phys. Rev. D 68, 054024 (2003)	21.5	
J. Lu, X. L. Chen, W. Z. Deng and S. L. Zhu, Phys. Rev. D 73, 054012 (2006)	32	
W. Wei, P. Z. Huang and S. L. Zhu, Phys. Rev. D 73, 034004 (2006)	39 ± 5	
S. Ishida, M. Ishida, T. Komada, T. Maeda, M. Oda, K. Yamada and I. Yamauchi, AIP Conf. Proc. 717, 716 (2004)	15 - 70	
H. Y. Cheng and W. S. Hou, Phys. Lett. B 566, 193 (2003)	10 - 100Tetraquark state	
A. Faessler, T. Gutsche, V.E. Lyubovitskij, Y.L. Ma, Phys. Rev. D 76 (2007) 133	79.3 ± 32.6 DK had. molecule	
M.F.M. Lutz, M. Soyeur, Nucl. Phys. A 813, 14 (2008)	140 Dynamically gen. resonance	
L. Liu, K. Orginos, F. K. Guo, C. Hanhart, Ulf-G. Meißner Phys. Rev. D 87, 014508 (2013)	133 ±22 DK had. molecule	
M. Cleven, H. W. Giesshammer, F. K. Guo, C. Hanhart, Ulf-G. Meißner hep-ph: arXiV 1405.2242 (2014)	NEW! Strong and radiative decays of D _{s0} *(2317) and D _{s1} (2460)	

Width of D_{s0}*(2317)

- Theoretical interpretations very sensitive for $\Gamma(D_{s0}^{*}(2317))$
- Formation reaction not possible: $\overline{p}p \not\rightarrow D_{s0}^*(2317)$
 - → Energy-scan with recoil @ threshold: $\overline{p}p \rightarrow D_{s0}^+ D_{s0}^* (2317)^-$

• Simulation @ 8.8 GeV/c

panda

- > 40k signals, 40k each background, e.g. $\overline{p}p \rightarrow D_s^+ D_s^- \pi^0$
- 10M generic background events
- Inclusive reconstruction of D_s[±], missing mass technique

Energy scan simulation around threshold

Frank Nerling

The PANDA experiment at FAIR

[M.Mertens, PhD thesis]

05/09/2013

Energy scan simulation around threshold

[M.Mertens, PhD thesis]

Meson Spectroscopy – Charmonium-like (exotics)

Charmonium(-like) Spectrum

- Since 2003 charmonium-like spectrum found richer as expected
- Observation of states that do not fit theoretical models/predictions
- The case of the X(3872):
 - ➢ isospin violating, very narrow
 - quantum numbers known (1⁺⁺, LHCb)
 - > width unclear
 - → nature not yet clear..

needed: measurement of width

- X,Y,Z states:
 - some need still confirmation
 - masses poorly known
 - statistics poor, nature unclear: Molecules, tetraquarks, hybrids, ..? Z_c(3900): First order exotic?

How PANDA can contribute: Study lineshapes

- Panda: Neutral & charged, e.g. $J/\psi \pi^{-}\pi^{+}$, $J/\psi \pi^{0}\pi^{0}$, $\chi_{c}\gamma \rightarrow J/\psi \gamma$, $J/\psi \gamma$, $J/\psi \eta$, $\eta_{c}\gamma$, ...
- Direct formation in $\overline{p}p \rightarrow lineshapes$
- Example: X(3872)

- Upper limit on branching ratio by LHCb: $BR(X \rightarrow \bar{p}p) < 0.002^*BR(X \rightarrow J/\psi \pi \pi^*) \rightarrow \Gamma < 1.2 \text{ MeV}$ EPJ C73 (2013) 2462
- And BR($X \rightarrow J/\psi \pi^- \pi^+$) > 0.026 (PDG 12) => $\sigma(\bar{p}p \rightarrow X(3872)) < 67 \text{ nb}$

- Here: Assume σ = 50 nb, Luminosity: 2x10³¹ cm⁻²s⁻¹
- Width resolution < 100 keV

[M.Galuska, PhD thesis]

Non-qq mesons: Charged cc-like states

- Z(4430)[±] seen by Belle, confirmed by LHCb
- Z(3900)[±] seen by BESIII, Belle

p a n)d a

- Z(4020)[±], Z(4040)[±] seen by BESIII
- Z(4050)[±], Z(4250)[±] seen by Belle

Non-qq mesons: Charged cc-like states

Studies planned with PANDA:

• production in pp: $pp \rightarrow Z(4430)^{\pm} \pi^{\mp}$ $Z(4430)^{\pm} \rightarrow \psi(2S) \pi^{\pm}$

p a n)d a

• formation in $\overline{p}n$: $\overline{p}d \rightarrow Z(4430)^{-} p_{spectator} \rightarrow \psi(2S) \pi^{-} p_{spectator}$

spectator proton needed to reconstruct → reduced mass resolution

Further Branches of the PANDA Physics Programme ...

Baryon Spectroscopy

Baryon spectroscopy in PANDA

- Large cross-section, no extra mesons
- 4π acceptance for charged and neutral
- Displaced vertex tagging

N and Δ baryons

- N* spectrum not understood
- Missing resonances
- Progress basically in photoproduction only

Charmed baryons

- Narrow widths of resonances
- Rich spectrum of states
- J^{PC} quantum numbers not yet all measured
- Testing ground for HQET

Nucleon spin structure

Basics of nucleon spin structure studies

- Bjorken scaling
 - > At high Q² dependence only on x: scatter off partons
- Parton distributions
 - Valence quarks
 - Sea: quarks & anti-quarks
 - Gluons
- Structure functions
 - Unpolarised, f₁
 - \succ Polarised, g₁ (and g₂)
 - > Tranverse polarised, h_1
- Proton spin status: $\langle s_z \rangle = \frac{1}{2} = \frac{1}{2} (\Delta u + \Delta d + \Delta s) + L_q + \Delta G + L_g$
 - > Quark contribution: $\Delta \Sigma = (\Delta u + \Delta d + \Delta s) \approx 0.3$ (Expt.)
 - ➢ Gluon polarisation: |∆G/G| < 0.3 (Expt.)</p>
 - > Other contributions: Orbital angular momentum

Electromagnetic proton form factor

- Access to the charge radius of the proton
- Incompatibility of Rosenbluth and polarisation data in spacelike region
- Same matrix element: Highly explored in spacelike region, almost unknown in timelike

Electromagnetic proton form factor

SPACELIKE, $q^2 < 0$

TIMELIKE, $q^2 > 0$

cross section (angular distribution)

Timelike EM form factor

 \rightarrow extract $|G_E|$ and $|G_M|$: with luminosity measurement, low q^2 (no $|G_E|$ suppression) \rightarrow extract $|G_E|/|G_M|$

• integrated cross section: $\sigma = \frac{4}{3} \frac{\pi \alpha^2}{\beta s} \left[|G_M|^2 + \frac{1}{2\tau} |G_E|^2 \right] \Rightarrow \text{effective FF}$

[M.Zambrana, Photon 2013]

Timelike EM form factor

[M.Zambrana, Photon 2013]

05/09/2013

Unprecedented precision in PANDA measuremen: $50\% \rightarrow 3-5\%$

[M.Zambrana, Photon 2013]

HIM

nholtz-Institut Mainz

x-ξ

Handbag Diagram A fractional momentum ξ is taken out GPDs: 4 functions ► H(x,ξ,t), E(x,ξ,t) $ightarrow \widetilde{H}(x,\xi,t), \ \widetilde{E}(x,\xi,t)$ (polarised) x+ξ GPD Quark distribution q(x), -q(-x) **H(x**, ξ, **0**) 10 0.2 7.5 **Properties of GPDs:** 0.4 5 GPDs carry information on both distribution of 2.5 0.6 partons: longitudinal & transverse -2. GPDs contain also information on 0.8 0.5 quark (orbital) angular momentum -0.5 M. Vanderhaeghen

- H(x,0,0) = q(x) structure functions of DIS
- $\int H(x,0,t) dx = F(t)$ nucleon formfactor

What GPDs are:

GPDs with PANDA

Generalised Parton Distributions

- Deeply Virtual Compton Scattering (DVCS)
- Hard Exclusive Meson Production (HEMP)

Crossed Channel with $\bar{p} \text{: } \textbf{GDAs}$

- Wide angle compton scattering
- Hard Exclusive Meson Production

Simulation

- Signal: $\bar{p}p \rightarrow \gamma \gamma$
- Backgrounds: $\bar{p}p \rightarrow \gamma \pi^0, \bar{p}p \rightarrow \pi^0 \pi^0$

Frank Nerling

Fanda Transition Distribution Amplitudes (TDAs)

- GPDs describe $q\overline{q}$ exchange
- TDAs describe qqq exchange
- ightarrow Backward exclusive meson production
- \rightarrow Process: $\bar{p}p \rightarrow \gamma \gamma^*$

Properties of TDAs:

- Universal non-perturbative objects describing e.g. $p \rightarrow \pi$ and $p \rightarrow \gamma$
- Obey QCD evolution equations

Feasibility Studies

- Cross section in reach for PANDA
- Signal: $\bar{p}p \rightarrow \gamma e^+e^-$ and $\bar{p}p \rightarrow \gamma \pi^0$
- Backgrounds: $\bar{p}p \rightarrow \pi^0$, $\bar{p}p \rightarrow \pi^0\pi^0$

Drell-Yan process with PANDA

Transverse nucleon spin

- Drell-Yan process (full PWA or polarised beam/target)
- No helicity flip fragmentation function needed as in DIS
- With pp access to valence antiquarks
- High x, high cross-section, high sensitivity
- First: Unpolarised only
- Later: Single spin asymmetry also

panda

panda

Scientific pillars of FAIR:

- Atomic, Plasma Physics and Applications APPA
- Compressed Baryonic Matter CBM
- NUclear STructure, Astrophysics and Reactors NUSTAR
- antiProtons ANnihilation at DArmstadt PANDA

12 June 2014

Total area	>	200	000	m²
Area buildings	=	98	000	m²
Usable area	=	135	000	m²

High Energy Storage Ring -- HESR

High resolution mode:

- e⁻ cooling: p ≤ 8.9 GeV/c
- 10¹⁰ anti-protons stored
- Luminosity up to 2 x 10^{31} cm⁻² s⁻¹
- Δp/p = 4 x 10⁻⁵

High intensity mode:

- Stochastic cooling
- 10¹¹ anti-protons stored
- Luminosity up to 2 x 10³² cm⁻² s⁻¹
- Δp/p = 2 x 10⁻⁴

Summary & conclusions

- Broad & fascinating physics programme at PANDA
- Anti-protons provide experimental key technique
- Accelerator and detector are on track

PANDA will be the facility to study QCD -- nucleon structure and spectroscopy

Thank you for your attention!

The PANDA collaboration:

~ 520 Members, 69 Institutes, 18 Countries

Austria, Australia, Belarus, China, France, Germany, India, Italy, Poland, Romania, Russia, Spain, Sweden, Switzerland, Thailand, Netherlands, USA, UK

Frank Nerling