

Charmonium Spectroscopy with the PANDA experiment at FAIR

Frank Nerling Helmholtz Institute Mainz, GSI Darmstadt **on behalf of the PANDA Collaboration**

Workshop on Physics at Future High Intensity e⁺e⁻ Collider, Hefei, China, January 13th – 17th 2015

Outline

Introduction

- > Motivation, physics programme
- Advantage of anti-protons
- Resonance scan method

Hadron spectroscopy

- Exotic hadrons
- Open charm
- Charmonium-like exotics
- Summary & outlook

Recent Hot Topics

Hadron Spectroscopy

Nucleon Structure

unexpected, manifestly exotic!

proton spin $\frac{1}{2}$ not yet understood

Hadron Physics and QCD

- Why are there no free quarks?
- Are there other colour neutral objects?
- What is the structure of the nucleon?
- What are the spin degrees of freedom?

Anti-Proton ANnihilation in DArmstadt p momentum [GeV/c] 0 10 12 2 15 4 6 8 Meson spectroscopy $\Omega \overline{\Omega}$ DD ຽັ້Ωີ $\sqrt{c} \overline{\underline{V}}_{c}$ $D_s \overline{D}_s$ Light mesons Charmonium ccqq pppp Exotic states: glue-balls, hybrids, nng,ssg ccg molecules / multi-quarks nng,ssg ccg (Anti-) Baryon production Nucleon structure ggg,gg Charm in nuclei ggg Strangeness physics cc light qq hypernuclei, **J/ψ, η**_c, χ_{cJ} $\pi, \rho, \omega, f_2, K, K^*$ > S = -2 nuclear system 2 3 4 5 6 1 mass [GeV/ c^2]

- Gluon rich process
- Gain ~ 2 GeV in annihilation (low momentum transfer)
- B = 0 system
- Access to all fermion-antifermion quantum numbers (not in e+e-)
- Access to states of high spin J
- Precise mass resolution in formation reactions

Formation:

→ All J^{PC} allowed for $(q\overline{q})$ accessible in $p\overline{p}$

Anti-Protons – Resonance Scan Method

- Cooled p
 beam: Excellent energy resolution!
- Production rate: Convolution of resonance and beam profile
- Principle has been proven to work ...

Resonance Scan Method -- an example: $\chi_{c1.2}$

Production:

p a n)d a

 $e^+e^- \rightarrow \psi' \rightarrow \gamma \chi_{1,2} \rightarrow \gamma (\gamma J / \psi) \rightarrow \gamma \gamma e^+ e^-$

 Invariant mass reconstruction depends on the detector resolution ≈ 10 MeV

Formation:

$$\overline{p}p \rightarrow \chi_{1,2} \rightarrow \gamma J / \psi \rightarrow \gamma e^+ e^-$$

- Resonance scan:
 - → mass resolution depends on the beam resolution

<mark>χς</mark> └→ γ J/ψ pp - $\rightarrow \gamma e^+ e^-$

 $e^+e^- \rightarrow \psi(2S)$ $\rightarrow \gamma \gamma e^+ e^-$

Resonance Scan Method -- an example: $\chi_{c1.2}$

Production:

ī a n d a

$$e^+e^- \rightarrow \psi' \rightarrow \gamma \chi_{1,2} \rightarrow \gamma (\gamma J / \psi) \rightarrow \gamma \gamma e^+ e^- z$$

 Invariant mass reconstruction depends on the detector resolution ≈ 10 MeV

Formation:

$$\overline{p}p \rightarrow \chi_{1,2} \rightarrow \gamma J / \psi \rightarrow \gamma e^+ e^-$$

- Resonance scan:
 - → mass resolution depends on the beam resolution

Gaiser et al., Phys. Rev. D34 (1986) 711: *CrystalBall (SLAC)*: $3512.3 \pm 4 \text{ MeV/c}^2$ Andreotti et al., Nucl. Phys. B717 (2005) 34-47: *E835 (Fermilab)*: $3510.641 \pm 0.074 \text{ MeV/c}^2$

dN (×I0³)

NB: Interpretation of many states depends on width of states!

Resonance Scan Method -- an example: $\chi_{c1.2}$

Production:

ī a n d a

$$e^+e^- \rightarrow \psi' \rightarrow \gamma \chi_{1,2} \rightarrow \gamma (\gamma J / \psi) \rightarrow \gamma \gamma e^+ e^- z$$

 Invariant mass reconstruction depends on the detector resolution ≈ 10 MeV

Formation:

$$\overline{p}p \rightarrow \chi_{1,2} \rightarrow \gamma J / \psi \rightarrow \gamma e^+ e^-$$

- Resonance scan:
 - → mass resolution depends on the beam resolution

E760/835@Fermilab ≈ 240 keV PANDA@FAIR ≈ 50 keV

dN (×I0³)

pp Production Cross Sections

Spectroscopy – Exotic Hadrons

Mesons and (Spin) Exotic States

Constituent quark model

- color neutral $q\overline{q}$ systems
- quantum numbers *I^G J^{PC}*
- $P = (-1)^{L+1}$ $C = (-1)^{L+S}$ $G = (-1)^{J+L+1}$
- J^{PC} multiplets: 0⁺⁺, 0⁻⁺, 1⁻⁻, 1⁺⁻, 1⁺⁺, 2⁺⁺, ...
- Forbidden: 0⁻⁻, 0⁺⁻, 1⁻⁺, 2⁺⁻, 3⁻⁺, ...

Three categories of exotics:

- Glueballs \rightarrow gg, ggg
- Hybrids \rightarrow (q \bar{q})g
- Molecules / multiquarks

 \rightarrow (qqq)(q \bar{q}), (q \bar{q})(q \bar{q}) or: qq $\bar{q}\bar{q}$, qqqq \bar{q}

→ The observation of exotic hadrons would be a confirmation of QCD

QCD: meson states beyond

Lattice Predictions

- Lattice QCD \rightarrow Predictions for masses/properties
- Current predictions for mesons, glueballs, hybrids

G. S. Bali, Int.J.Mod.Phys. A21 (2006) 5610-5617

• From LQCD calculations:

папп

Spin-exotic hybrid candidate $\tilde{\eta}_{C1}$ with m ≈ 4.3 GeV/c², J^{PC} = 1⁻⁺

• Exclusive reconstruction in two favoured channels:

• Production X-section assumed similar to $\overline{p}p \rightarrow \psi(2S)\eta$ (33pb) \rightarrow Need good calorimetry + good particle identification

$\bar{\mathbf{p}}\mathbf{p} \rightarrow \tilde{\mathbf{\eta}}_{c1}\mathbf{\eta} \rightarrow \chi_{c1}\pi^0\pi^0\mathbf{\eta}$

Charmonium Spectroscopy with PANDA at FAIR

$\overline{p}p \rightarrow \widetilde{\eta}_{c1}\eta \rightarrow D^0 \overline{D}{}^{0*}\eta$

- Simulation @ 15 GeV/c
 - > 200k signals + background, e.g. $\overline{p}p \rightarrow D^0 \overline{D}^0 * \pi^0$
 - 11C kinematic fit (mass constraints, 4C energy momentum)

Open charm: The D_s spectrum

- Qualitative agreement theory vs. experiment on D states details however still open
- Many new D_J mesons (LHCb)
- Narrow states (2003): D_s*(2317) and D_s*(2416) still under discussion (and other broad states recently)
- Masses: Significantly lower than expected (quark potential model), and just below DK and D*K threshold
- Widths: Only upper limits
- Interpretation unclear: DK / D*K molecules, tetraquarks, chiral doublers, ...? Sensitive to width

Open charm: The D_s spectrum

- Qualitative agreement theory vs. experiment on D states details however still open
- Many new D_J mesons (LHCb)
- Narrow states (2003): D_s*(2317) and D_s*(2416) still under discussion (and other broad states recently)
- Masses: Significantly lower than expected (quark potential model), and just below
 DK and D*K threshold
 Recent page
- Widths: Only upper limits
- Interpretation unclear: DK / D*K molecules, tetraquarks, chiral doublers, ...? Sensitive to width

2.3

m(D, π°) GeV/c²

2.2

50 0

2.1

Interpretation $\leftarrow \rightarrow$ Width of D_{s0}*(2317)

Different theoretical approaches, different interpretations	$\Gamma({ t D_{s0}}^{\star}(extsf{2317})^{\star} o extsf{D}_s \pi^{0})$ (keV)	
M. Nielsen, Phys. Lett. B 634, 35 (2006)	6 ± 2	
P. Colangelo and F. De Fazio, Phys. Lett. B 570, 180 (2003)	7 ± 1	
S. Godfrey, Phys. Lett. B 568, 254 (2003)	10Pure \overline{cs} state	
Fayyazuddin and Riazuddin, Phys. Rev. D 69, 114008 (2004)	16	
W. A. Bardeen, E. J. Eichten and C. T. Hill, Phys. Rev. D 68, 054024 (2003)	21.5	
J. Lu, X. L. Chen, W. Z. Deng and S. L. Zhu, Phys. Rev. D 73, 054012 (2006)	32	
W. Wei, P. Z. Huang and S. L. Zhu, Phys. Rev. D 73, 034004 (2006)	39 ± 5	
S. Ishida, M. Ishida, T. Komada, T. Maeda, M. Oda, K. Yamada and I. Yamauchi, AIP Conf. Proc. 717, 716 (2004)	15 - 70	
H. Y. Cheng and W. S. Hou, Phys. Lett. B 566, 193 (2003)	10 - 100Tetraquark state	
A. Faessler, T. Gutsche, V.E. Lyubovitskij, Y.L. Ma, Phys. Rev. D 76 (2007) 133	79.3 ± 32.6 DK had. molecule	
M.F.M. Lutz, M. Soyeur, Nucl. Phys. A 813, 14 (2008)	140 Dynamically gen. resonance	
L. Liu, K. Orginos, F. K. Guo, C. Hanhart, Ulf-G. Meißner Phys. Rev. D 87, 014508 (2013)	133 ±22 DK had. molecule	
M. Cleven, H. W. Giesshammer, F. K. Guo, C. Hanhart, Ulf-G. Meißner hep-ph: arXiV 1405.2242 (2014)	NEW! Strong and radiative decays of $D_{s0}^{*}(2317)$ and $D_{s1}(2460)$	

Width of D_{s0}*(2317)

- Theoretical interpretations very sensitive for $\Gamma(D_{s0}^{*}(2317))$
- Formation reaction not possible: $\overline{p}p \not\rightarrow D_{s0}^*(2317)$
 - → Energy-scan with recoil @ threshold: $\overline{p}p \rightarrow D_{s0}^+ D_{s0}^* (2317)^-$

• Simulation @ 8.8 GeV/c

panda

- > 40k signals, 40k each background, e.g. $\overline{p}p \rightarrow D_s^+ D_s^- \pi^0$
- 10M generic background events
- Inclusive reconstruction of D_s[±], missing mass technique

Energy scan simulation around threshold

Frank Nerling

Charmonium Spectroscopy with PANDA at FAIR

[M.Mertens, PhD thesis]

14/01/2015

Energy scan simulation around threshold

[M.Mertens, PhD thesis]

Charmonium Spectroscopy with PANDA at FAIR

14/01/2015

Meson Spectroscopy – Charmonium-like (exotics)

Charmonium(-like) Spectrum

- Since 2003 charmonium-like spectrum found richer as expected
- Observation of states that do not fit theoretical models/predictions
- The case of the X(3872):
 - isospin violating, very narrow
 - quantum numbers known (1⁺⁺, LHCb)
 - width unclear
 - → nature not yet clear..

needed: measurement of width

- X,Y,Z states:
 - some need still confirmation
 - masses poorly known
 - statistics poor, nature unclear: Molecules, tetraquarks, hybrids, ..? Z_c(3900): First order exotic?

How PANDA can contribute: Study lineshapes

- Panda: Neutral & charged, e.g. $J/\psi \pi^- \pi^+$, $J/\psi \pi^0 \pi^0$, $\chi_c \gamma \rightarrow J/\psi \gamma \gamma$, $J/\psi \gamma$, $J/\psi \eta$, $\eta_c \gamma$, ...
- Direct formation in $\overline{p}p \rightarrow lineshapes$
- Example: X(3872)

- Upper limit on branching ratio by LHCb: $BR(X \rightarrow \bar{p}p) < 0.002^*BR(X \rightarrow J/\psi \pi \pi^+) \rightarrow \Gamma < 1.2 \text{ MeV}$ EPJ C73 (2013) 2462
- And BR(X \rightarrow J/ $\psi\pi^{-}\pi^{+}$) > 0.026 (PDG 12) => $\sigma(\bar{p}p \rightarrow X(3872)) < 67 \text{ nb}$

- Here: Assume σ = 50 nb, Luminosity: 2x10³¹ cm⁻²s⁻¹
- Width resolution < 100 keV

[M.Galuska, PhD thesis]

Non-qq mesons: Charged cc-like states

- Z(4430)[±] seen by Belle, confirmed by LHCb
- Z(3900)[±] seen by BESIII, Belle

p a n)d a

- Z(4020)[±], Z(4040)[±] seen by BESIII
- Z(4050)[±], Z(4250)[±] seen by Belle

Non-qq mesons: Charged cc-like states

Studies planned with PANDA:

• production in pp: $pp \rightarrow Z(4430)^{\pm} \pi^{\mp}$ $Z(4430)^{\pm} \rightarrow \psi(2S) \pi^{\pm}$

p a n)d a

• formation in $\overline{p}n$: $\overline{p}d \rightarrow Z(4430)^{-} p_{spectator} \rightarrow \psi(2S) \pi^{-} p_{spectator}$

spectator proton needed to reconstruct → reduced mass resolution

Frank Nerling

panda

Charmonium Spectroscopy with PANDA at FAIR

panda

Scientific pillars of FAIR:

- Atomic, Plasma Physics and Applications APPA
- Compressed Baryonic Matter CBM
- NUclear STructure, Astrophysics and Reactors NUSTAR
- antiProtons ANnihilation at DArmstadt PANDA

12 June 2014

Total area	>	200	000	m²
Area buildings	=	98	000	m²
Usable area	=	135	000	m²

High Energy Storage Ring -- HESR

High resolution mode:

- e⁻ cooling: p ≤ 8.9 GeV/c
- 10¹⁰ anti-protons stored
- Luminosity up to 2 x 10³¹ cm⁻² s⁻¹
- Δp/p = 4 x 10⁻⁵

High intensity mode:

- Stochastic cooling
- 10¹¹ anti-protons stored
- Luminosity up to 2 x 10³² cm⁻² s⁻¹
- Δp/p = 2 x 10⁻⁴

Summary & conclusions

- Broad & fascinating physics programme at PANDA
- Anti-protons provide experimental key technique
- Accelerator and detector are on track

PANDA will be the facility to study QCD -- hadron structure and spectroscopy

Thank you for your attention!

The PANDA collaboration:

~ 520 Members, 69 Institutes, 18 Countries

Austria, Australia, Belarus, China, France, Germany, India, Italy, Poland, Romania, Russia, Spain, Sweden, Switzerland, Thailand, Netherlands, USA, UK

Frank Nerling

Charmonium Spectroscopy with PANDA at FAIR