You are reading the official PANDA publication list.
There is a list of related publications available as well.
Furthermore, you can find a list of PhD thesis and a list of approved Technical Design Reports.
2023
- Belias, A.
Overview of the PANDA detector design at FAIR
International journal of modern physics / Conference series 51, 2360001 (2023) DOI:10.1142/S2010194523600017 - Simon Gazagnas et al.
Reconstructing charged-particle trajectories in the PANDA Straw Tube Tracker using the LOcal Track Finder (LOTF) algorithm
Eur. Phys. J. A 59, 100 (2023), DOI: 10.1140/epja/s10050-023-01005-8 - Falk Schupp, Michael Bölting, Patrick Achenbach, Sebastian Bleser, Josef Pochodzalla, Marcell Steinen
An infrared light-guide based target positioning system for operation in a harsh environment
arXiv 2023 DOI: 10.48550/arXiv.2303.13359,
Nuclear Instruments & Methods in Physics Research / Section A 1056, 168684 (2023) DOI: 10.1016/j.nima.2023.168684 - Dzhygadlo, R. ; Belias, A. ; Gerhardt, A. ; et al
The PANDA Barrel DIRC
Nuclear instruments & methods in physics research / Section A 1055, 168480 (2023) DOI:10.1016/j.nima.2023.168480 - H. Flemming, O. Noll
Performance tests of feature extraction algorithms for short preamplifier transient
Nucl. Instr. Meth. A (2023), DOI: 10.1016/j.nima.2022.167880 - Miehling, D. ; Böhm, M. ; Gumbert, K. ; et al
Lifetime and performance of the very latest microchannel-plate photomultipliers
Nuclear instruments & methods in physics research / Section A 1049, 168047 (2023) DOI:10.1016/j.nima.2023.168047 - Krauss, S. ; Böhm, M. ; Gumbert, K. ; et al
Performance of the most recent Microchannel-Plate PMTs for the PANDA DIRC detectors at FAIR
Nuclear instruments & methods in physics research / Section A 1057, 168659 (2023) DOI:10.1016/j.nima.2023.168659 - P. Jiang, K. Götzen, R. Kliemt, F. Nerling, K. Peters
Deep Machine Learning for the PANDA Software Trigger
arXiv 2022 DOI: 10.48550/ARXIV.2211.15390
The European physical journal / C 83(4), 337 (2023) DOI:10.1140/epjc/s10052-023-11494-y
2022
- P. Jiang, K. Götzen, R. Kliemt, F. Nerling, K. Peters
Deep Machine Learning for the PANDA Software Trigger
arXiv 2022 DOI: 10.48550/ARXIV.2211.15390 - H. Flemming, H. Deppe and P. Wieczorek
The front end and trigger unit for an analogue transient recorder ASIC
JINST 17 (2022), DOI: 10.1088/1748-0221/17/09/C09013 - H. Flemming, H. Deppe and P. Wieczorek
A family of transient recorder ASICs for detector readout
JINST 17 (2022), DOI: 10.1088/1748-0221/17/07/C070 - H. Flemming, H. Deppe and P. Wieczore
Low noise amplifier with adaptive gain setting — (AWAGS) ASI
JINST 17 (2022), DOI: 10.1088/1748-0221/17/06/C06010
2021
- S. Chesnevskaya, S. Zimmermann and J. Zmeskal
Performance Monitoring of the Barrel Time-of-Flight Supermodule for the PANDA Experiment at FAIR
JINST 16 (2021), DOI: 10.1088/1748-0221/16/12/T12002 - Barucca, G., Davì, F., Lancioni, G. et al.
Panda Phase One
Eur. Phys. J. A 57, 184 (2021), DOI: 10.1140/epja/s10050-021-00475-y - Barucca, G., Davì, F., Lancioni, G. et al.
Study of excited $\Xi$ baryons with the PANDA detector
Eur. Phys. J. A 57, 149 (2021), DOI: 10.1140/epja/s10050-021-00444-5 - [PANDA collaboration]
The potential of $Λ$ and $Ξ^−$ studies with PANDA at FAIR
Eur. Phys. J. A 57 No. 154 (2021), arXiv: 2009.11582, DOI: 10.1140/epja/s10050-021-00386-y - Piotr Lebiedowicz, Otto Nachtmann, Piotr Salabura, and Antoni Szczurek
Exclusive f1(1285) meson production for energy ranges available at the GSI-FAIR with HADES and PANDA
Phys.Rev.D 104 (2021), DOI: 10.1103/PhysRevD.104.034031 - T. Held, M. Albrecht, T. Erlen et al.,
An LED/LCD-based monitoring system for the PANDA Electromagnetic Calorimeter,
Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, Volume 997, 2021, DOI: 10.1016/j.nima.2021.165167 - [PANDA collaboration]
A feature-extraction and pile-up reconstruction algorithm for the forward-spectrometer EMC of the PANDA experiment
Nucl.Instrum.Meth.A 1011 (2021), DOI: 10.1016/j.nima.2021.165601 - [PANDA collaboration]
Charm (-onium) physics at PANDA
PoS CHARM2020 (2021), DOI: 10.22323/1.385.0004
2020
- J. Adamczewski-Musch et al. (HADES and PANDA@HADES Collaboration),
Production and electromagnetic decay of hyperons: a feasibility study with HADES as a Phase-0 experiment at FAIR,
Submitted to EPJ, arXiv: 2010.06961 - A. Belias,
FAIR status and the PANDA experiment,
2020 JINST 15 C10001, DOI: 10.1088/1748-0221/15/10/C10001 - R. Dzhygadlo et al. (PANDA Cherenkov Group),
Time imaging reconstruction for the PANDA Barrel DIRC,
2020 JINST 15 C09050, DOI: 10.1088/1748-0221/15/09/C09050 - M. Böhm et al.,
Performance of the most recent MCP-PMTs,
2020 JINST 15 C11015, DOI: 10.1088/1748-0221/15/11/C11015 - A. Lehmann, M. Böhm, D. Miehling et al.,
Recent progress with microchannel-plate PMTs,
Nuclear instruments & methods in physics research / A 952, 161821 (2020), DOI: 10.1016/j.nima.2019.01.047 - I. Köseoglu et al.,
Status of the PANDA Endcap Disc DIRC project,
2020 JINST 15 C03001, DOI: 10.1088/1748-0221/15/03/C03001 - C. Schwarz et al. (PANDA Cherenkov Group),
Status of the PANDA Barrel DIRC,
2020 JINST 15 C03055, DOI: 10.1088/1748-0221/15/03/C03055 - M. Preston, H. Calén, T. Johansson et al.,
Proton and Neutron Induced Single Event Upsets in FPGAs for the PANDA Experiment,
IEEE Transactions on Nuclear Science, vol. 67, no. 6, pp. 1093-1106, June 2020, DOI: 10.1109/TNS.2020.2987173 - Yu M. Bystritskiy, V.A. Zykunov, A. Dbeyssi et al.,
Radiative corrections in proton--antiproton annihilation to electron-positron and their application to the PANDA experiment,
Eur. Phys. J. A56 (2020) no.2, 58, DOI: 10.1140/epja/s10050-020-00063-6 - A. Ali et al.,
Particle identification algorithms for the PANDA Barrel DIRC,
2020 JINST 15 C09057, DOI: 10.1088/1748-0221/15/09/C09057 - E. Etzelmueller et al. (PANDA DIRC Group),
The PANDA DIRC detectors
NIM A952 (2020) 161790, DOI: 10.1016/j.nima.2019.01.017 - Lehmann et al. (PANDA DIRC Group),
Latest improvements of microchannel-plate PMTs
VCI2019 Proceedings, DOI: 10.1016/j.nima.2019.162357
2019
- [PANDA Collaboration] M. Moritz et al.,
The Electromagnetic Calorimeter for the PANDA Target Spectrometer,
Journal of Physics, DOI: 10.1088/1742-6596/1162/1/012025, 2019 - [PANDA Collaboration] G.Barucca et al.,
Precision resonance energy scans with the PANDA experiment at FAIR,
Eur. Phys. J. A (2019) 55: 42, DOI: 10.1140/epja/i2019-12718-2, 2019 - [PANDA Collaboration] G.Barucca et al.,
Precision resonance energy scans with the PANDA experiment at FAIR,
Eur. Phys. J. A 55, 42 (2019), DOI: 10.1140/epja/i2019-12718-2 - [PANDA Collaboration] J.Pochodzalla et al.,
Strangeness nuclear physics at PANDA in a nutshell,
arXiv: 1906.02357 - G.Schepers et al. (PANDA Cherenkov Group),
The innovative design of the PANDA Barrel DIRC,
Il Nuovo Cimento C 42 02-03, DOI: 10.1393/ncc/i2019-19070-5, 2019 - A. Lehmann et al.,
Latest improvements of microchannel-plate PMTS,
Nucl.Instrum.Meth. A 162357 Volume 958, 1 April 2020 , DOI: 10.1016/j.nima.2019.162357, 2019 - [PANDA Collaboration] G. Perez-Andrade et al.,
Simulation study of the $\bar{p}p\rightarrow \bar{\Sigma}^0 \Lambda$ reaction with PANDA at FAIR,
Journal of Physics: Conference Series (Vol. 1308, No. 1, p. 012017), DOI: 10.1088/1742-6596/1308/1/012017, 2019
2018
- K. Föhl et al.,
The Endcap Disc DIRC detector of PANDA,
Eur. Phys. J. A (2019) 55: 42, DOI: 10.1016/j.nima.2018.11.102, 2018 - R. Dzhygadlo et al. (PANDA Cherenkov Group),
The Barrel DIRC Detector for the PANDA Experiment at FAIR,
Springer Proceedings in Physics, vol 212. Springer, Singapore, DOI:10.1007/978-981-13-1313-4_25, 2018 - J. Schwiening et al. (PANDA Cherenkov Group),
The PANDA Barrel DIRC,
Journal of Instrumentation, JINST 13 C03004, DOI:10.1088/1748-0221/13/03/C03004, arXiv:1803.10642, 2018 - J. Smyrski et al..,
Pressure stabilized straw tube modules for the PANDA Forward Tracker,
JINST 13 (2018) no.06, P06009, DOI: 10.1088/1748-0221/13/06/P06009, 2018 - A. Apostolou, J. Messchendorp, N. Kalantar-Nayestanaki, J. Ritman, P. Wintz,
Performance of a prototype Straw Tube Tracker for the P̄ANDA experiment,
J. Phys. Conf. Ser. 1024 (2018) no.1, 012013, DOI: 10.1088/1742-6596/1024/1/012013, Conference: C17-05-28 Proceedings, 2018 - T. Nasawasd et al.,
Track propagation methods for the correlation of charged tracks with clusters in the calorimeter of the PANDA experiment,
Published in JINST 13 (2018) no.02, T02008, DOI: 10.1088/1748-0221/13/02/T02008, 2018 - K. Föhl et al,
The PANDA Endcap Disc DIRC,
Published in JINST 13 (2018) no.02, C02002, DOI: 10.1088/1748-0221/13/02/C02002, 2018 - [PANDA Collaboration] A. Dbeyssi et al.,
Investigation of the proton structure at PANDA-FAIR,
PoS Hadron2017 (2018) 171, DOI: 10.22323/1.310.0171, 2018 - V.Abazov et al.,
PANDA Muon System Prototype,
EPJ WoC, Volume 177(2018)04001, DOI: 10.1051/epjconf/201817704001, 2018 - A. Lehmann et al.,
Lifetime of MCP-PMTs and other performance features,
Journal of Instrumentation, 2018 JINST 13 C02010, DOI: 10.1088/1748-0221/13/02/C02010, 2018 - A. Lai,
The PANDA Strip ASIC: PASTA,
Journal of Instrumentation, Volume 13, January 2018, DOI: 10.1088/1748-0221/13/01/c01043, 2018
2017
- A. Lai et al.,
Design, Implementation, and Verification of a DAQ System for the Prototypes of the F.E. Electronics of the PANDA MVD,
Conference: 2017 IEEE Nuclear Science Symposium and Medical Imaging Conference (NSS/MIC), DOI: 10.1109/NSSMIC.2017.8533084, 2017 - Klaus Peters, Lars Schmitt, Tobias Stockmanns & Johan Messchendorp,
PANDA: Strong Interaction Studies with Antiprotons,
Nuclear Physics News, 27:3, 24-28, DOI: 10.1080/10619127.2017.1351182, 2017 - J. Smyrski et al.,
Design of the forward straw tube tracker for the PANDA experiment
The International Conference "Instrumentation for Colliding Beam Physics" (INSTR17), DOI: 10.1088/1748-0221/12/06/C06032, 2017 - [PANDA Collaboration] B. Singh,
Feasibility Study for the Measurement of $\pi N$ Transition Distribution Amplitudes with PANDA in $\bar{p}p\rightarrow J/\psi \pi^0$,
Phys. Rev. D 95, 032003, DOI: 10.1103/PhysRevD.95.032003, 2017 - T. Johansson,
Hyperon Production in Annihilation Reactions,
XVII International Converence on Hadron Spectroscopy and Structure (Hadron2017), Proceedings of Science, 310, 2017 - [PANDA Collaboration] MarÍa Carmen Mora EspÍ et al.,
Nucleon structure observables with PANDA,
EPJ Web of Conferences 164, 06002 (2017), DOI: 10.1051/epjconf/201716406002, 2017 - [PANDA Collaboration] L Bianchi et al.,
Parallel Algorithms for Online Track Finding for the pANDA Experiment at FAIR,
J.Phys.Conf.Ser. 898 (2017) no.7, 072040, DOI: 10.1088/1742-6596/898/7/072040, 2017 - M. Düren et al.,
The Endcap Disc DIRC of PANDA,
Nucl. Instr. Meth. A,, DOI: 10.1016/j.nima.2017.02.077, 2017 - M. Schmidt et al.,
Particle identification algorithms for the PANDA Endcap Disc DIRC,
2017 JINST 12 C12051, DOI: 10.1088/1748-0221/12/12/C12051, 2017 - M. Böhm et al.,
The PANDA Barrel-TOF Detector,
Nucl. Instr. Meth. A., DOI: 10.1016/j.nima.2017.12.010, 2017 - [PANDA Collaboration] Prencipe, E. et al.,
Interface of the general fitting tool GENFIT2 in PandaRoot,
Journal of physics / Conference Series 898, 042037-(2017), DOI: 10.1088/1742-6596/898/4/042037, 2017 - Quagli, T. et al.,
First results of the front-end ASIC for the strip detector of the PANDA MVD,
Journal of Instrumentation 12(03), C03063 - C03063 (2017), DOI: 10.1088/1748-0221/12/03/C03063, 2017 - A. Lehmann et al.,
Recent developments with microchannel-plate PMTs,
Nucl. Instr. Meth. A, DOI: 10.1016/j.nima.2016.12.063, 2017 - A. Lehmann et al.,
Tremendously increased lifetime of MCP-PMTs,
Nucl. Instr. Meth. A845 (2017) 570, DOI: 10.1016/j.nima.2016.05.017, 2017 - [PANDA Collaboration] B. Singh et al.,
Technical Design Report for the PANDA Forward Spectrometer Calorimeter,
arXiv:1704.02713, 2017 - C. Schwarz et al.,
The PANDA DIRC Detectors at FAIR,
J. Inst. 12 (2017) C0700, DOI: 10.1088/1748-0221/12/07/C07006, arXiv:1707.09269 - Y. Wang et al.,
Antiproton-proton annihilation into charged light meson pairs within effective meson theory,
Phys.Rev. C95 (2017) no.4,045202, DOI: 10.1103/PhysRevC.95.045202, 2017 - Y. Wang et al.,
Antiproton-protonannihilation into light neutral meson pairs within an effective meson theory,
Phys. Rev.C 96, 025204 (2017), DOI: 10.1103/PhysRevC.96.025204, 2017 - A. Bianconi, E. Tomasi-Gustafsson,
Fourth dimension of the nucleon structure: Spacetime analysis of the time-like electromagnetic proton form factors,
Phys. Rev. C95(2017) no.1, 015204, DOI: 10.1103/PhysRevC.95.015204, 2017 - M. Böhm et al.,
Fast SiPM Readout of the PANDA TOF Detector,
J. Inst. 11 (2016) C05018, DOI: 10.1088/1748-0221/11/05/C05018, 2017 - S. Zimmermann et al.,
The PANDA Barrel-TOF Detector at FAIR,
J. Inst. 12 (2017) C08017, DOI: 10.1088/1748-0221/12/08/C08017, 2017 - M. Pfaffinger et al.,
Recent results with lifetime enhanced microchannel-plate photomultipliers,
Nucl. Instr. Meth. A, DOI: 10.1016/j.nima.2017.10.084, 2017 - [PANDA Collaboration] T. Stockmanns et al.,
FairMQ for Online Reconstruction - An example on PANDA test beam data,
J. Phys.: Conf. Ser. 898 032021, DOI: 10.1088/1742-6596/898/3/032021, 2017
2016
- [PANDA Collaboration] B. Singh et al.,
Feasibility studies of time-like proton electromagnetic form factors at PANDA at FAIR,
Eur. Phys. J. A 52, no. 10, 325, DOI: 10.1140/epja/i2016-16325-5, 2016 - [PANDA Collaboration], I. Zimmermann et al.,
Feasibility studies on time-like proton electromagnetic form factors at PANDA-FAIR,
AIP Conf. Proc. 1735, 080004, DOI: 10.1063/1.4949457, 2016 - [PANDA Collaboration] J. Messchendorp,
PANDA Experiment at FAIR - Subatomic Physics with Antiprotons,
JPS Conf. Proc. 13, 010016, DOI: 10.7566/JPSCP.13.010016, 2016 - [PANDA Collaboration] B. Singh,
Study of Doubly Strange Systems with Stored Antiprotons,
Nuclear Physics A, 954, 323-340, DOI: 10.1016/j.nuclphysa.2016.05.014, 2016 - J. Pütz, A. Gillitzer, J. Ritman & T. Stockmanns,
Study of Excited Ξ Baryons in Antiproton-Proton Collisions with the PANDA Detector,
Journal of Physics, Conference Series 742, 012028, DOI: 10.1088/1742-6596/742/1/012028, 2016 - J. Pochodzalla et al.,
Many Facets of Strangeness Nuclear Physics with Stored Antiprotons,
JPS Conf. Proc. 17, 091002, DOI: 10.7566/JPSCP.17.091002, 2016 - [PANDA Collaboration] E. Prencipe,
Customization of the GENFIT2 Fitting Package in P̅ANDA,
EPJ Web of Conferences 127, 00013 (2016), DOI: 10.1051/epjconf/201612700013, 2016 - [PANDA Collaboration] E. Prencipe,
Status and Perspectives for P̄ANDA at FAIR,
Nucl. Part. Phys. Proc. 273-275 231-237, DOI: 10.1016/j.nuclphysbps.2015.09.031, 2016 - A. Lehmann et al.,
Lifetime of MCP-PMTs,
2016 JINST 11 C05009, DOI: 10.1088/1748-0221/11/05/C05009, 2016 - E. Etzelmüller et al.,
Tests and developments of the PANDA Endcap Disc DIRC,
2016 JINST 11 C04014, DOI: 10.1088/1748-0221/11/04/C04014, 2016 - J. Rieke et al.,
Resolution changes of MCP-PMTs in magnetic fields,
2016 JINST 11 C05002, DOI: 10.1088/1748-0221/11/05/C05002, 2016 - R. Dzhygadlo et al.,
The PANDA Barrel DIRC,
2016 JINST 11 C05013, DOI: 10.1088/1748-0221/11/05/C05013, 2016 - Prencipe, E., Lange, J. S., Blinov, A.,
New spectroscopy with PANDA at FAIR: X, Y, Z and the F-wave charmonium states,
Inst. 1735(1), (2016), DOI: 10.1063/1.4949447, 2016 - Pietro, V. D., Brinkmann, K.-T., Riccardi, A., et al.,
A time-based front-end ASIC for the silicon micro strip sensors of the P̄ANDA Micro Vertex Detector,
Journal of Instrumentation 11(03), C03017 - C03017 (2016) DOI: 10.1088/1748-0221/11/03/C03017, 2016 - [PANDA Collaboration] Cao, L., Ritman, J.,
Simulated Measurement of the Ds Meson Semileptonic Decay Form Factor with the P̄ANDA Detector,
Nuclear and particle physics proceedings 273-275, 2485 - 2487 (2016), DOI: 10.1016/j.nuclphysbps.2015.09.433 - A. Bianconi, E. Tomasi-Gustafsson,
Phenomenological analysis of near threshold periodic modulations of the proton time-like form factor,
Phys.Rev. C93 (2016) no.3,035201, DOI: 10.1103/PhysRevC.93.035201, 2016